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Fitness landscapes are an important concept in molecular evolution. Many important
examples of landscapes in physics and combinatorial optimization, which are widely
used as model landscapes in simulations of molecular evolution and adaptation, are
“elementary”, i.e., they are (up to an additive constant) eigenfunctions of a graph
Laplacian. It is shown that elementary landscapes are characterized by their correlation
functions. The correlation functions are in turn uniquely determined by the geometry of
the underlying configuration space and the nearest neighbor correlation of the elemen-
tary landscape. Two types of correlation functions are investigated here: the correlation
of a time series sampled along a random walk on the landscape and the correlation func-
tion with respect to a partition of the set of all vertex pairs.

1. Introduction

Since Sewall Wright’s seminal paper [1] the notion of a fitness landscape underly-
ing the dynamics of evolutionary optimization has proved to be one of the most
powerful concepts in evolutionary theory. Implicit in this idea is a collection of gen-
otypes arranged in an abstract metric space, with each genotype next to those other
genotypes which can be reached by a single mutation, as well as a value assigned to
each genotype. Such a construction is by no means restricted to biological evolu-
tion; Hamiltonians of disordered systems, such as spin glasses [2,3], and the cost
functions of combinatorial optimization problems [4] have the same basic struc-
ture. It has been known since Eigen’s [5] pioneering work on the molecular quasis-
pecies that the dynamics of evolutionary adaptation (optimization) on a landscape
depends crucially on detailed structure of the landscapes itself. Extensive computer
simulations, see, e.g., [6,7] have made it very clear that a complete understanding of
the dynamics is impossible without a thorough investigation of the underlying land-
scape[8,9].

The landscapes of a number of well known combinatorial optimization problems
such as the Traveling Salesman Problem (TSP) [10], the Graph Bipartitioning
Problem (GBP) [11], or the Graph Matching Problem (GMP) have been investi-
gated in some detail, see [12-14]. A detailed survey of a variety of model landscapes
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derived from folding RNA molecules into their secondary structures has been per-
formed recently [6,7,15-26].

Most of the knowledge about landscapes has so far been derived using statistical
methods, considering random models of landscapes rather than a single landscape.
The distribution of local optima and the statistical characteristics of down-hill
walks have been computed for the uncorrelated landscape of the random energy
model [27-29]. Furthermore, two one-parameter families of tunably rugged land-
scapes have been studied extensively: the Nk model and its variants [17,30-32] and
the p-spin models [33-36]. Local optima of 2-spin models are considered in [37-41].
While the statistical approach is the natural one, e.g., in the physics of spin glasses,
it seems to be rather contrived in evolutionary biology because it is by no means
clear what a reasonable statistical model should look like, even if there is a compu-
tational procedure to model the landscapes of, say, RNA free energies.

A theory of landscape is based on three ingredients: we are given a finite, but very
large set V' of “configurations” and a ““fitness function’ f : V¥ — R. The third
ingredient is a notion of neighborhood between the configurations, which allows us
to interpret V as the vertex set of a graph I'. We will refer to I as the configuration
space of the landscape f. Let us briefly discuss two examples here:

Consider the set of RNA molecules of given chain length n. A particular mole-
cule x can be represented as a string of length n taken from the alphabet
{G, C, A, U}; molecular biologists call this string the sequence of the RNA. The
“fitness’ function f is, for instance, the free energy of folding x into its secondary
structure [15]. In silico the folding is done by an algorithm containing a large num-
ber of experimentally determined parameters [42]. In nature as well as in in vitro
experiments variation is introduced by mutations, predominantly point-mutations.
Neighboring sequences are thus those that differ in only a single position. The
resulting graph is known as the sequence space [43,44].

A very different example is the travelling salesman problem. A salesman starts
from his home city and visits exactly once each of the n cities on a given list, then he
returns home. The configurations are the possible tours, i.e., all permutations of
the cities on the salesman’s list. The numerical value assigned to a particular tour 7
is its total length /(7). The notion of neighborhood between different tours is much
less obvious here than in the biological example above. Usually one says that two
tours are neighbors if they can be interconverted by a simple operation on the list of
cities, such as swapping two cities (transpositions), or inverting the order of a con-
tiguous part of the list. It turns out that the performance of an optimization heuris-
tic depends crucially on the choice of the neighborhood relation. We will return to
this topic later in this contribution.

Conceptually, there is a close connection between the (biological) landscapes
and the Potential Energy Surfaces (PES) that constitute one of the most important
issues of theoretical chemistry [45,46]. As a consequence of the validity of the Born-
Oppenheimer approximation, the PES provides the potential energy as a function
of the nuclear geometry of the system, U(R). PES are therefore defined on a high-
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dimensional continuous space and they are assumed to be smooth (at least twice
continuously differentiable). The (global) analysis of PES thus makes extensive use
of differential topology. The analysis of discrete landscapes, on the other hand,
requires different techniques. For instance, the critical points of a PES, character-
ized by VU(R) = 0, have no obvious discrete counter part.

A successful approach towards understanding protein folding [47] is to approxi-
mate the immensely complicated potential functions that are used in MM and MD
simulations by simple lattice models, see e.g. [48] for a recent review. Due to the dis-
cretization of real space, these models give rise to landscapes in the precise sense of
this contribution. Current research in lattice heteropolymers centers around the
kinetics and pathways of folding [49], i.e., on the “landscape analogue” of the reac-
tion path problem of theoretical chemistry [50].

We shall be concerned here with static properties of landscapes rather than with
dynamical processes (such as viral evolution of protein folding) that take place on
landscape. The main theme of this paper is the relationship between the Fourier-
expansion of a given landscapes f and its autocorrelation functions. Landscapes
that are (up to an additive constant) eigenvectors of the Laplacian operator of the
configuration space I take center stage in the theory presented here. We shall refer
to.them as elementary landscapes. Two types of correlation functions will be con-
sidered here: The autocorrelation function r(s) of a ““time series” generated by a
random walk on the configuration space, and the correlation function p(X) defined
on suitable partitions of the set of all pairs of configurations. We will show that a
landscape is elementary if and only if r(s) is exponential which is in turn equivalent
to p(X) begin a left eigenvector of what is called the ““collapsed adjacency matrix”
of the configuration space.

In section 2 we consider the properties of r(s) in some detail. Section 3 is devoted
to the Laplacian operator on graphs and the Fourier expansion of landscapes. We
shall also prove the first part of the main theorem at this stage. Section 4 discusses
the known elementary landscapes and reviews some the implications of elementar-
ity. Correlation measures defined on partitions of the set of pairs of configurations
are the subject of section 5. The second part of the main theorem will be proved
there. The results of this contribution are summarized in section 6 and discussed in
section 7.

2. “Random walk” correlation functions of landscapes

Because of the extremely large number of configurations, 4" for RNA and »! for
the TSP for example, we need a condensed description of a landscape. Correlation
measures relating the values of nearby configurations with each other seemto be a
natural approach. We will show that the most useful definition of such a measure
depends on the symmetry properties of the graph I' = (¥, E), i.e., on the choice of
the neighborhood relations.
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DEFINITION
For each landscape f: V — R, wedefine
def o2 def 22
Z f(x) and f 1 |Z[f —f-.
er xe¥

A landscape with o7 = Ois called flar.

Note that 0'2 0 if and only if f is constant. The quantity f is the mean of the
Iandscape and 0—2 can be interpreted as the variance of the landscape. There is noth-
ing “statistical’” about f or o%. Both quantities are well defined functionals of
f:V — R, and they should not be mistaken for the averages over different
instances which are commonly used in the analysis of statistical models of land-
scapes. A discussion of the stochastic aspects of landscape models is presented else-
where [51].

Both f and o} do not depend on the neighborhood structure implied by the edge
set E of T". Eigen and co-workers [8] have introduced correlation functions that
depend on the Hamming distance in sequence space as a measure of the local struc-
ture of fitness landscapes. Weinberger [52] proposed to use a simple random walk
{xo,x1, ...} on the vertex set in order to sample a “time series” {f(xo),f(x1),...}
and to use the autocorrelation function of this “time series’ as a characteristic of
the landscape A simple random walk [53] on a graph I" has transition matrix
TY AD! , where A is the adjacency matrix of I" and D is the diagonal matrix of
vertex degrees with entries

@f [1 if {x,y} €E, def
= and D,, = A, =6 ,[Al],,
i { 0 otherwise, oo ZEZV * wlAll
respectively. Here 4, ,, is the Kronecker symbol, and 1 «f (1,1,...,1) is the vector

with all entries 1.
The expected autocorrelation function of a “time series’’ sampled along a simple
random walk on I"is defined as

(f(xt)f(xt+s)>xo,: - (f(xf»::g,t(.f(xf'ﬂ))xo,l
VD) 00 = U2 D () g — S Coesa)) s

where the notation (), ,emphasizes that the expectation is taken over all “times”
t and all initial conditions xy. We will refer to r(s) as the ““ random walk ” correlation
function of the landscape f on I'. Since the averages are taken over all initial condi-
tions with uniform weights, the definition of r(s) simplifies to

(,f(xl)f(xt+s)>x0’( - (f(x:))im . (1)
<f(x1)2>xg,t - (f(xt»;zm,:

b

r(s) o

r(s) =
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Note that, again, r(s) can be viewed as a functional of f : ¥ — R. While the defini-
tion of r(s) via the random walk is convenient for sampling data from a given land-
scape, say a particular instance of a combinatorial optimization problem or a
model of the complicated energy function for protein folding, it is inconvenient
from a mathematical point of view. Furthermore, it seems to be rather contrived to
invoke a stochastic process in order to characterize a given function defined on a
finite set. We will therefore derive a representation of r that does not require the
explicit assumption of a random walk, at least for the case of regular graphs. It is
not all clear that r(s) is a useful measure of a landscape on a more irregular graph.
To this end we need two preparatory lemmata #!.

LEMMA 1
Let I be a regular graph and let F : ¥ — R be an arbitrary function. Let {x,}
be a simple random walk onI". Then (F(x,)), , = F.

Xp,f

LEMMA?2
Let I be a regular graph andletF : ¥V x V — R.Then

<F(xt+$7xf) Xot Z F x Y [T xy*
] leyEV

The desired representation of r(s) is now obtained as a corollary of the above two
lemmata.

COROLLARY 1
Let f : ¥ — R be a non-flat landscape on a D-regular graph I' with adjacency
matrix A. Then

h{f, T9) —
/? f2
where T = (1/D)A

r(s) = » 2)

REMARK

Both for the proof of Lemma 1 and the proof of Lemma 2 it is crucial that
T1 = 1. Since each transition necessarily ends in some vertex x € V' we have always
1T = 1. In other words, instead of insisting the I" be a regular graph and that the
random walk be simple we could as well require that T be a bi-stochastic, but not
necessarily symmetric, transition matrix. This might be a starting point for an
investigation of landscapes on non-regular configuration spaces.

#1 In this contribution we will label a technical result as a “proposition” if it is taken from the litera-
ture, and as a “lemma” otherwise. The proofs of all lemmata and their corrollaries can be found in
the appendix.
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3. Graph Laplacians and their eigenfunctions
3.1. INCIDENCE MATRIX AND GRAPH LAPLACIAN

The incidence matrix and the Laplacian matrix of a graph can be viewed as dis-
crete analogues of the gradient and the Laplace operator in Euclidean spaces.

DEFINITION

Let T be an arbitrary graph with vertex set ¥ and edge set E. For each edge
h = {v, w} we choose one of the two vertices as the ‘“‘positive end” and the other one
as the “negative end” of the edge. The choice of this orientation is completely arbi-
trary. The matrix V* with entries

+1 vertex v; is the positive end of edge ¢;,
V,?; = ¢ —1 vertex v; is the negative end of edge ¢;,
0  otherwise.
is called the incidence matrix of T.

The choice of the symbol V is intentional. In fact, let f : ¥ — R be an arbitrary
landscape. Then Vf : E — Risgiven by

(V)(h) =f(v) =f(w), where h={v,w},

and v is the positive end of the edge 4. This is as close to a differential operator as
one can get on a graph. This rather unusual form of the “gradient” ¥V is the reason
why discrete landscapes cannot be approached like the smooth potential energy
surfaces of theoretical chemistry. For instance, the gradient does not vanish at the
local minima and maxima in our case.

DEFINITION
Let D be the diagonal matrix of vertex degrees, i.e., Dy, is the number of edges
incident into x, and let A be the adjacency matrix of T'. Then the matrix

_A=D-A (3)

is called the Laplacian of T'. For D-regular graphs, i.e., graphs for which all vertices
have degree D, this becomes A = A — DI

The graph Laplacian shares its most important properties with the familiar dif-
ferential operator A = Y7, ;9% inR”, as explained in some more detail in Fig. 1.

PROPOSITION 1

(i) Aissymmetric.

(i1)) —Aisnon-negative definite.

(iii) Aissingular; the eigenvector 1 = (1,..., 1) belongs to the eigenvalue Ay = 0.
IfT"is connected (as we will always assume), then A\g has multiplicity 1.
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Fig. 1. The graph Laplacian A is a generalization of the discrete approximation of the familiar
Laplacian differential operator in R". This approximation is commonly performed by replacing the
continuous space by a square lattice. Rescaling the space coordinates we can assume that the lattices
points have integer coordinates. The first derivatives, evaluated at the mid-points of the edges, ¢;, are
computed from 9f (e;)/8x = f(x2) — f(0), 8f (e3)/Ox = f(0) — f(x1), and analogous expressions for
df /dy. Consequently, the second derivative evaluated in 0 become 3%((0)/8x? = (f(x2) — £(0))
—{£(0) = f(x1)) =f(x1) + f{x2) — 2f(0), and an analogous expression for &*f/8y*. The discrete
approximation of the usual Laplacian hence coincides with the graph Laplacian of the square
lattice.

(iv) —A = V*V, thatis, it corresponds to ““second derivatives’ on the graphs.
(v) Foranytwo landscapesf and g Green’s formula holds in the following form

Y f)()(x) =D elx)( == (V) (R)(Ve)(h).

xeV xeV heE

Proof

(i) is obvious, (i) and (iii) are well known, see, e.g., [54,55]. Claim (iv) is
Proposition 4.8 of [54]. Green’s formula (v) is easily checked by explicit calcula-
tion:

Z(vf)( Z Z Zf x)vhxvhyg( )

heE xeV yeV heE
=33 1) (Z v::hvhy) g(y)
xeV yeV heE
== f(X)Age() = =D _f(x)(de)(x
xeV yeV xelV

A similar calculation shows Y, (V) (h)(Vg)(h) = >, g(x)(Af)(x). O
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The graph Laplacianis central to the theory of electrical networks. As a reference
we give Kirchhoff’s classical paper [56]. Let (x) be the current flowing into the net-
work at vertex x. Then there is a potential ® : ¥ — R satisfying A® = 7, and the
vector { = V. A recent book on potential theory on discrete lattices is [57].

Finally we note the following connection between the spectrum of a graph and
the graph Laplacian: Suppose I is D-regular with adjacency matrix A. Then A and
—A have the same eigenvectors, and thus the eigenvectors of —A are given by
—A = e — D.

3.2. FOURIER EXPANSION OF LANDSCAPES

A series expansion in terms of a complete and orthonormal system of eigenfunc-
tions of the Laplace operator is commonly termed Fourier expansion. We will
adopt the same terminology here following [32]. Thus, let f be a landscape onI" and
let {;} denote a complete orthonormal set of eigenvectors of the graph Laplacian
—A. Then we call the expansion

14

() =) aipi(x) (4)

i=]

a Fourier expansion of the landscape. It will often be convenient to label the eigen-
vectors g; be the vertices of the underlying graph I'. This is possible because the
eigensystem of the finite symmetric matrix A is complete. In general, this labeling is
of course arbitrary.

Since we deal with a finite vector space with a scalar product, for which we will
use the notation (,), spanned by eigenvectors {(;} of the graph Laplacian, the
familiar properties of Fourier series, such as Parseval’s equation

I 1P= 4 = 3 (22 )2.

yev {2y, 0y)

Another important result is the mean square approximation theorem:

PROPOSITION 2

Consider a landscape / on I with Fourier expansion f =} . a,¢,. Let X be a
subset of V, and consider approximations of f of the form g = Zye x by, Then the
squared approximation error || f — g ||>= ((f — g), (f — g)) is minimized by choos-
ingb, =a, = (f,p,) forally € X.

It is clear that landscapes which are eigenfunctions of the graph Laplacian will
play a special role. It will turn out to be more useful, however, to consider a slightly
larger class of landscapes.
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DEFINITION
Alandscapef : V — Riselementary if there are constants /* and A such that
Af +Af —f"1)=0. (5)

This definition i1s motivated by Lov Grover’s observation [58] that the cost func-
tions of a number of well-studied combinatorial optimization problems in fact ful-
filleq. (5). This will be discussed in section 4.

LEMMA3
A non-flatlandscape on a connected graph I' is elementary if and only if
fx)=f+elx), VxeV, (6)

where @ is an eigenfunction of —A with eigenvalue A > 0.

3.3. “RANDOM WALK” CORRELATION FUNCTIONS OF ELEMENTARY
LANDSCAPES

The “random walk” correlation function r(s) provides an elegant way of charac-
terizing elementary landscapes.

THEOREM 1
Let f be a non-flat landscape on a D-regular graph T' and let r(s) be the
“random walk” correlation function of /. Then f is elementary if and only if r(s) is

an exponential function, i.e., iff r(s) = ¢°.

Proof
Let {¢} be an orthonormal set of real eigenvectors of the Laplacian on T, i.e.,
(—A)(pi = )\,‘(p,'. Since

T=I+D-‘A=I+-115A (7)
we have Ty; = (1 — \;/D)yp;. Now substitute the decomposition f = ), a;p; into
the definition of 7(s). One finds

-

r(S) — | Za;aj Wx#P/)(l - ’\/D (Za‘ Z% X)) }/

er

e T et (za, }:mx)”

xeV er
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Recall that 1 is always an eigenvector of A, belonging to A9 = 0. By orthogonality
we have therefore 3_ 1, ¢:(x) = Ofor all i 0, and consequently f = ayp. Noting

that >~ ., wi(x)p;(x) = (@i, ;) = 6; weobtain
i lai P (1= A/D)'~ | ao |* po*

r(s) = T
W}Z | ai |2 = | a0 [ 0°
It remains to compute @;. We know ¢y = cl with some constant ¢ # 0.
Normalization implies 1 = ¢2(1,1) = ¢ | V |,i.e., po(x) = 1/+/| V |forallx € V.
Substituting this into r(s) yields
oo+ |aF (1= X/D)— | P

1V] | ao |* + [V( Dizo l @i > — | ao % ]
It is convenient to introduce the normalized amplitudes
]2

r(s) =

def | ai
A= =——-+-"—. (8)
l Zj;eo | aj |?

Note that a landscape is flat if and only if 4; = 0 for all i # 0. Thus the normalized
amplitudes are in fact well defined for all non-flat landscapes. Furthermore 4; = 0
is true for all i # 0 and only if a; = 0. The expression for r(s) simplifies consider-
ably:

r(s) =Y Al — X/D)". 9)

i#0
Consequently r(s) is an exponential function if and only if all nonzero 4; belong
to a single eigenvalue A\; of A. This is the case if and only if f is of the form
= (ap/+/| V |)1 + ¢ where ¢ is an eigenvector of —A. Applying Lemma 3 com-
pletes the proof. ]

The “random walk” correlation function of an elementary landscape is deter-
mined by the single parameter g = %ef r(1), which one might call the nearest-neighbor
correlation of the landscape. We have g = (1 — A /D), where )\ is a non-zero eigen-
value of the graph Laplacian —A. Since r(s) is exponential we can define a correla-
tion length £ by

{O if p=0

~ def

74 1. (10)
e ifo+#0.

o] "O7

Thus the “random walk” correlation function is of the form r(s) = exp( —sf) for
0> 0,r(s) = (—1)’ exp(—s/¢) for o < 0,and r(s) = &;0 for ¢ = 0. Table 1 at theend
of the following section compiles numerical values of g and £ for a few landscapes of
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practical interest. For many applications it is more convenient to define the correla-
tion length of an arbitrary landscape f as
3 1) =D Ai/N.
s=0 i=0
In the case of an elementary landscape we have thus £ = D/)\,, p =1 - 1/¢, and
thus? = ¢+ O(1) aslongas p > 0, seee.g.[59,60].

4. Elementary landscapes

In this section we will briefly discuss a number of landscapes, all of which are ele-
mentary (or at least almost elementary). We will conveniently subdivide our discus-
sion according to the type of the configuration space underlying the landscapes.
Three classes of configuration spaces are of particular importance: (a) landscapes
defined on sequences, (b) landscapes defined on permutations, and (c) landscapes
defined on a set of subsets of given finite set. In this contribution we typeset
matrices only boldface if they are related to the configuration space I' in some way.
Many of the landscape models discussed in the following contain matrices of
parameters which will be typeset in italics.

4.1. CAYLEY GRAPHS AND CARTESIAN PRODUCTS OF GRAPHS

An important class of graphs with high symmetry are obtained from finite
groups.

DEFINITION

Let (G, o) be a finite group, and let ® be a set of generators #2 of G such that (i)
the group identity ¢ is not contained in &, and (ii) for each x € ® the inverse group
element x~! is also contained in ®. The Cayley graph I'(G, ®) is the graph with ver-
tex set G and {x, y} € E if and only if there is a g € ® such that y = gx, i.e., if and
onlyifxy~! € ®.

The set of generators ® can be interpreted as the set of all possible elementary
mutations, or — in the context of an optimization heuristic — as the move set of the
algorithm.

Many, but by no means all, of the configuration spaces encountered in this con-
tribution are Cayley graphs, in particular the Hamming graphs (generalized hyper-
cubes) and the Cayley graphs of the symmetric group S,. We will return to their
graph-theoretic properties later in this contribution. In this section we will be con-

#2 & ¢ Gis a set of generators if each group element z € G can be represented as a finite product of
elements of .
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tent with showing that a variety of interesting landscapes are elementary on appro-
priate graphs.

For Cayley graphs of commutative groups the eigenvectors and eigenvalues have
a particularly simple form. We exploit the fact that a finite commutative group has
a unique decomposition into cyclic groups, see e.g. [61, §13]: Let Ny be the orders of
the cyclic groups. The cyclic group of order N in turn are isomorphic to the addi-
tive group modulo Ny, and thus G is isomorphic to the group of “‘vectors” x = (x,
X2, .« Xm), 0 X < N, under component-wise additions modulo Ny:

xoy=(x;+y1 mod Ni,x3 + ya mod Ny, ..., Xm + ym mod N,,) .

The characters [62] of the commutative group G are given by
xg(x) = exp (Zm';%) . (11)

Let I'(G, ®) a Cayley graph of G with graph Laplacian —A. It is convenient to allow
also for complex eigenvectors of the symmetric matrix —A, since it can be shown
[63]that

(—A)xg = AgXg holds with A = > "[1 = xg(x)] . (12)

x€d

In other words, the characters x, of G are the eigenvectors of any Cayley graph
derived from the commutative group G.

Probably the simplest examples of Cayley graphs with commutative groups
are the complete graphs K,. Let G be a commutative group with » elements, for
instance a cyclic group, and define & = G\ {¢}, where « denotes the group iden-
tity. Then I'(G, ®) has an edge between any two vertices, i.e., it is the complete
graph K,,. In terms of optimization procedures and their move-sets, the complete
graphs correspond to random search: all configurations are accessible in a single
step.

LEMMA 4
Let f be a non-constant landscape on the complete graph K, with n vertices.
Thenf is elementary.

Elementary landscapes are thus only interesting when they ““live”” on non-trivial
graphs with an interestingly rich spectrum of —A.

DEFINITION

The (Cartesian) product I'; x I'; of two graphs has vertex set V(T'; x ')
= V(I'1) x V(I'y). Two nodes (xi, x2) and (31, y2) are connected if either (i) x; = y;
and x,, y; are adjacentinI', or (ii) xo = y, and x;, y; are adjacentinI'y.
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PROPOSITION 3
LetI' =T x I‘% Then

(1) Let )\,(c ) and A 2 be eigenvalues of the Laplacians of the two graphs I') and I,
respectively. Then Als an eigenvalue of the Laplacian of I'; x I'; if and only if it
1s ofthe form AY + A( )

(i) Let uk ) and u (of be elgenvectors of the Laplacian of I'; and I',. Then ufc ) u<2)
isan elgenvector of Ty x Ty,

(iii) IfT'y = T'(Gy, @) and 'y, = I'(G,, ®,) are Cayley graphs then

F(G1, @1) X I‘(Gz, @) = F(Gl X Gz, ({Ll} X @2) U (‘I)z X {Lz}))

isagain a Cayley graph.
Proof
For (i) and (ii) see [64], claim (iii) is easily verified from the definition of the
Cartesian product. O

Our interest in the Cartesian product of graphs comes from the fact that impor-
tant classes of graphs can be constructed as repeated Cartesian products of very
simple units. As an example consider the sequence spaces or Hamming graphs Q.
The vertices of these graphs are sequences of constant length » constructed from a
fixed alphabet with « letters. Two sequences are adjacent if they differ in a single
position along the sequence. Obv1ously Q =~ K, is the complete graph with « ver-
tices. Itis easy to check that Q" = Q” x K, foralln>=2.

4.2. LANDSCAPES ON THE BOOLEAN HYPERCUBE

An orthonormal basis of eigenvectors of the Laplacian is easily constructed
explicitly for Boolean hypercubes Q7. Without loosing generality we may use the
alphabet {+1, —1}. A configuration is then a string o of ““spins” o, € {+1,—1}. An
alternative encoding uses a binary string x, with x; € {0, 1}. The following result is
well known:

PROPOSITION 4
Any landscape f on the Boolean hypercube can be written as

n
=0+ 3 sy o, 03

p=1 i <i<...<ip

where the J;,;, ;, are constants.
Itis not hard to check that the products

(o) = 04,05, ... 0, Where gy = 1 if and only if k € i1,5,...,5},

are in fact eigenvector of the Laplacian of the Boolean hypercube because of the



14 P.F. Stadler / Landscapes and their correlation functions

correspondence €,(0) = x,4(x) with o; = 2x; — 1. Furthermore, one finds that the
eigenvalue corresponding to ¢, depends only on the number p of non-zero entries in
the multi-index g, see e.g. [36]. One finds

Ap = 2np with multiplicity m(),) = (n) . (14)
b
Hamiltonians of the form
Hp(o) = Z Jihy..i,04,0iy - - O, (15)
I <h<...<lp

play a prominent role in the theory of spin glasses; they are known as p-spin models.
It was introduced by Derrida [33] in order to bridge the gap between the SK model
[65], which is the special case p = 2, and the random energy model [33,34,66,67]. In
physics the coefficients are usually chosen i.i.d. from a Gaussian distribution. As a
consequence of Proposition 4 above we can represent any landscape on the Boolean
hypercube as a superposition of p-spin models with suitable choices of the interac-
tion coefficient J;, gy Let us now consider a few examples:

Weight Partition (WP). Given a string of n “spins” o; € {—1,+1}" and corre-
sponding weights w;, the cost function is given by

" 2
flo)= (Zwim‘) : (16)
i=1

The move set is given by flipping a single spin, hence the configuration space is
again a hypercube. Grover [58] showed that WP is elementary with A = 4 for any
choice of the weights w;.

Not-All-Equal-Satisfiability (NAES). Consider a vector of n binary variables.
A literal is a variable or its complement. A clause is a set of three literals that does
not contain both a variable and its complement. A clause is said to be satisfied if at
least one literal is 0 and at least one literalis 1. An instance of NAES is given by a set
of ¢ clauses, and the cost function is the number of non-satisfied clauses. The move
set is defined by flipping the value of a single variable, thus the configuration space
is the Boolean hypercube, Grover [58] showed that WP is elementary with A\ = 4 for
any choice of clauses.

Low Autocorrelated Binary Strings (LABSP). The LABSP [68,69] consists of
finding binary strings o over the alphabet {—1,+1} with low aperiodic off-peak
autocorrelation Ry(o) = Ef‘i }k o;0,4, for all lags k. These strings have technical
applications such as the synchronization in digital communication systems and the
modulation of radar pulses. The quality of a string ¢ is measured by the fitness
function
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n—1
f(0) =) Ri(o)*. (17)
k=1

In most of the literature on the LABSP the merit factor F(o) = n*/(2f (¢)) is used,
see [69] for details.

LEMMA 5
The landscape f of the LABSP can be written as

51-1 n—2k n—1 n—1

f@)=a+ Y > 2eulo) + > €iirkgrk(0) - (18)
k=1

i=1 k=1 i=1 ji—j i+k

COROLLARY 2
The “random walk” correlation function of the LABS is of the form

"s) = [1 —0(1/n)]<1 ~§>X+O(l/n)(l _g)s. (19)

The landscape of the LABPS is thus not elementary, it consists of a superposition
of two modes, namely p = 2 and p = 4. The smoother p = 2 contribution becomes
negligible for large », so that f behaves for long strings almost like an elementary
p = 4 landscape. This fact explains why the LABPS has been found to be much
harder for simulated annealing than, say, the SK spin glass [69]. This author [14]
has computed the “‘random walk’ autocorrelation function (s) numerically based
on the merit factor F. The numerical estimate for the correlation length

£~0.123 x n - 0.983

is in excellent agreement with the asymptotic value £ = n/8 + O(1) implied by the
corollary.

4.3. LANDSCAPES ON HAMMING GRAPHS

Boolean hypercubes are of course a special case of Hamming graphs. We have
discussed them in a separate subsection because of their particular importance.
Hamming graphs with larger alphabets (a > 2) are of particular importance in
biology: the sequences of nucleic acids, RNA or DNA, contain four different bases,
and proteins use 20 different amino-acids. Just as for the hypercube, the Laplacian
spectrum and an ONB of eigenvectors can be constructed explicitly {70,71].

Graph Coloring Problem (GCP). An instance of a graph coloring problem con-
sists of graph G(V, E) with n vertices and a collection of «a different colors. A con-
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figuration x is an a-coloring of the vertex set V, i.e., an assignment of one color x,
to each vertex p of the graph. The cost function is the number edges {p, ¢} € E such
that x, = x,:

f(x) = z 5x(p)x(q) . (20)
{r.q}eE

A move is the replacement of one color by another one at single vertex. The config-
uration spaces are thus the general Hamming graphs, i.e., sequence spaces over the
alphabet of the « colors. Grover [58] has shown that each instance of GCP is ele-
mentary on @ with A = 2a.

4.4. PERMUTATIONS: TRAVELLING SALESMAN AND GRAPH MATCHING

The configurations of a family of optimization problems can be represented as
permutations of finite number » of objects. Hence the symmetric group S, takes the
role of V. Natural choices of move sets are sets of generators of the S, and thus the
configuration spaces are Cayley graphs of the symmetric group. The most conveni-
ent sets of generators are: the set 7 of all transpositions (i, /), the set X of all canoni-
cal transpositions (7,7 + 1), and the set Z of all reversals [, ], which are also called
inversions or 2opt-moves, [72].

Travelling Salesman Problem (TSP). An instance of a TSP [10] is defined by a
set of n cities and matrix W of costs for connecting them. A tour is permutation 7 of
cities, and its cost is

n
) =" Waioyiiz) (21)
Py

where the indices are taken modulo n. Different versions of the TSP are defined by
the properties of W (arbitrary, or symmetric, or with entries additionally obeying
the triangle inequality, etc.; see [73]).

In the following it will be convenient to use

@) = (1) =D Waga) -
J

The permutation 7* is the ‘“‘reverse order” permutation of =, i.e., f*(m) = f(7*) is
the cost of the tour 7 when traveled in the opposite direction. Thus f (7) = f*(m) for
all m € S, is true if and only if the cost matrix W is symmetric. Recalling that any
matrix W can be uniquely decomposed into its symmetric component W
=(W+ W%)/2 and its antisymmetric component W* = (W — W*)/2 we
introduce
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wao)m b= f(m) ;f( )’

e 7t') — zj:wﬁg)wgq) :f(ﬂ) ;f (7() )

Note that /7 and f® can be viewed as cost functions of TSPs with “distance
matrices” W7 and W, respectively.

LEMMA 6

Both /7 and f* are elementary landscapes on the Cayley graphs of the symmetric
group with the transpositions and the inversions as generators, respectively. In par-
ticular we have for transpositions

AfP+2(n=1)(f"=f)=0, Af*+2nf*=0, ‘ (22)
and for inversions (2opt-moves [ 72]) we find

nn+1)

Af°+n(f’—f)=0, Af*+ 7 S =0. (23)

COROLLARY 3
The landscape of a TSP with transpositions or inversions is elementary if and
only if W is either symmetric or antisymmetric.

Asymmetric TSPs hence provide an example of fairly simple composite land-
scapes. They consist of two modes corresponding to the symmetric and the
antisymmetric part of the distance matrix W, respectively. It is also interesting to
pote in this context that canonical transpositions (i, i + 1) do not lead to an elemen-
tary landscape. Numerical data [74,12] have indicated that the “‘random walk” cor-
relation functions r(s) of both the symmetric and the antisymmetric components
are exponential. Theorem 1 now provides a mathematical explanation for this
observation.

The nearest neighbor correlations of the symmetric and antisymmetric compo-
nents of a TSP with transpositions are p = 1 —4/nand o =1~ 4/(n — 1), respec-
tively, i.e., very similar. In fact, numerical estimates [12] are consistent with
o ~ 1 —4/nfor large nin both cases. In the case of inversions we have a symmetric
mode with nearest neighbor correlation ¢ = 1 —2/(n — 1) and an antisymmetric
contribution with a vanishingly small contribution g = —2(n — 1) ~ 0.

It is interesting to correlate these values of p with known facts about the perfor-
mance of heuristic optimization algorithm, in particular with the simulated anneal-
ing. It has been observed by several authors that simulated annealing on symmetric
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TSP is much more effective when reversals instead of transpositions are used as
move set, see, e.g., the books [75,76]. Furthermore, Miller and Pekny [77] have
observed that reversals are a remarkably inefficient move set for asymmetric TSPs.
These observations are in accordance with the conjecture that landscape with
smoother correlation functions have fewer local optima and are thus easier to opti-
mize on [12]. In particular the difference between symmetric and asymmetric TSPs
when reversals are used is easily explained in these terms: while for the symmetric
TSP the landscape is as smooth as possible, it is extremely rugged for the antisym-
metric case.

Graph Matching Problem (GMP). Given a graph G with n vertices and a sym-
metric matrix W of edge weights, the task is to partition the graph into n/2 pairs of
vertices such that the sum of the edge weights corresponding to these pairs is opti-
mal. A convenient encoding of the problem is the following. Let = € S, be a permu-
tation of the vertices. We assume that the vertices are arranged such that
[w(2k — 1), m(2k)] form a pair. The cost function is then

n/2

) =Y Wak—t),m(2k) - (24)
k=T

Again, the configuration space is the symmetric group, and hence the set of all
transpositions is a reasonable move set.

LEMMA7
The landscape of the graph matching problem GMP with transposition metric
iselementary with A = 2(n — 1).

Note that this result is false if ¥ is not symmetric.
4.5. LANDSCAPES ON JOHNSON GRAPHS

Another class of configuration spaces arises if the configurations can be regarded
as subsets of some finite set.

DEFINITION

Let X be a finite set, n = | X|, and let S be the collection of k-element subsets of
X. The graph J(n, k) has vertex set Sy and two vertices are adjacent if the corre-
sponding subsets of X have k — 1 vertices in common. J(n,k) is called Johnson

graph.
Only one example of this class has received extensive attention so far.

Graph Bipartitioning Problem (GBP). G is a graph with an even number # of ver-
tices and H is a symmetric matrix of edge weights. A configuration is a partition of
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the vertex set into two subsets 4 and X \ 4 of equal size. Two bipartitions
[4,X \ A] and [B, X \ B] are neighbors if Bis obtained from 4 by exchanging a ver-
tex from A4 by a vertex from X \ 4. Thus the configuration space is the Johnson
graph J(n,n/2). The cost function is

fa,x\4)=3 > Hy, (25)

i€A jeX\A

i.e., f is the total weight of all edges connecting 4 and X \ 4. As a close relative of
the Sherrington—Kirkpatrick model the GBP has received considerable attention
[11]. Grover [58] found that each instance of the GBP is an elementary landscape
with A = 2(n — 1), see also Table 1. Stadler and Happel [24] have shown by explicit
calculations that the “random walk” correlation function of the GBP on J(n,n/2)
is

g8 8\
rs)=1(1—-~+—=], 26
0=(1-1+3) D
inaccordance with Theorem 1.
4.6. NODAL DOMAINS OF SCHRODINGER OPERATORS

In this contribution we are only interested in eigenfunctions ¢ of the Laplacian
operator —A. The following interesting result can, however, be proved for a much
larger class of operators acting on landscapes. Let a be a weight function on the
edges of I, conveniently defined as a: ¥ x V' — Rsuch that a(x, y) = a(y,x) > 0if
{x,y} € E and a(x,y) = 0 otherwise. Furthermore let v: V' — R be an arbitrary
“potential”. A linear operator H, defined by the action

Table 1

Summary of the elementary landscapes that are described in section 4.

Problem T D A 0 7

NAES o4 n 4 1-3 in=3-5,+0G)
WPP % n 4 -4 in—3-4+0G)
p-spin o4 n 2p 1-2 An~1-tl+ ok
GCP Qn (@-n 20 -8y S itasyat oG
symmetric (S, T) nin—-1/2  2n-1) ~4 in—1-11+0G)
TSP 0(S,J) nan—-1/2 n 1--2 n—1-41+0Gh)
anti-symmetric  1(Sx,7) nin—1)/2 2n 1--4 In-3-1140(h
TSP 0(S,J) nn-1/2 nn+1)/2 -3 &~ In2-+0(In’n)
GMP T{S,, 7) nn—1/2  2n-1) 1-4 in-1-114 00k
GBP J(n,nj2)  n*/4 2(n—1) 1-848  In-3-2Rl40)
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Hf (x) € S a(x,»)[f (x) — /()] +v(x)f (x) (27)

X~y

is called a Schrodinger operator. Setting a(x,y) =1 if {x,y} € E, ie., a(x,y)
= A,), and choosing v(x) = 0 shows that the graph Laplacian —A is in fact a
Schrodinger operator. Discrete Schrodinger operators without potential can be
interpreted as Laplacians of edge-weighted graphs [78].

The Perron-Frobenius theorem implies that the smallest eigenvalue A, of H is
nondegenerate and the corresponding eigenfunction f] is positive everywhere if " is
connected. Let

M <o S s s hag. .. S/\lyl

be the list of eigenvalues of H arranged in non-decreasing order and repeated
according to the multiplicity #*. Let f; be any eigenfunction associated with the
eigenvalue ). Without loosing generality we may assume that {f;} is a complete
orthonormal set of eigenfunctions satisfying Hf; = \;f;. Since H is a real operator,
we take all eigenfunctions to be real.

A configuration x € V is a local minimum if f(x)<f(y) for all neighbors
y € 8{x} of x. Correspondingly x is a local maximum if f (x) = f (y) for all y € &{x}.
Local optima are the very feature of a landscape that makes it rugged. Local optima
are traps of optimization heuristics and evolutionary adaptation. An understand-
ing of the distribution of local optima is thus of utmost importance for the under-
standing of a landscape. The relation between the correlation length £ and the
number of local optima of an (elementary) landscape has been the subject of recent
numerical simulations [60,79]. These studies support the conjecture [12] that there
is roughly one local optimum within each ball in I" with a radius that is determined
by the correlation length ¢, see also [80]. Little can be said about the geometric
arrangement of local optima for an arbitrary landscape f. The situation is slightly
better for elementary landscapes.

PROPOSITION'S

Let f be an eigenfunction of H with eigenvalue A > 0. If xj is a local maximum
of f then v(xp) < A implies f(xq) 20 and v(xp) = A implies f(x) <O0. If xq is a local
minimum of f then v(xp) <A implies f(xp) <0 and v(xp) = A implies f(xp) >0. In
particular, if v = 0 then all local maxima are non-negative and all local minimal are
non-positive.

Proof
If x¢ is local maximum than f(x,) —f(y) >0, and hence Hf (x¢) = v(x0)f (x0).
Using that f is an eigenfunction yields M (xo) = v(x)f (xo). Using that A >0 yields

#3 Note that in this subsection we count the eigenvalues starting at 1 instead of 0 as in the rest of this
contribution.
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the assertion for a local maximum. The argument for local minima is analogous.
Ifv=0,i.e.,if His a Laplacian of an edge-weighted graph, the case A <v(x;) con-
tradicts A > 0. The special case H = — A is Theorem 6 in [58]. t

Some more global information can be obtained on the distribution of positive
and negative valued of an eigenfunction f of a Schrodinger operator. This leads us
to the notion of nodal domains. In a continuous setting one defines the nodal set of
a continuous function f as the preimage f~!(0). The nodal domains are the con-
nected components of the complement of f~1(0). In the discrete case this definition
does not make sense since a function f can change sign without having zeroes.
Instead we use the following:

DEFINITION
X is anodal domain of a function f : ¥ — Rifitis a maximal subset of ¥ subject
to the two conditions
(1) X isconnected as an induced subgraph of T';
(i) ifx,y € X thenf(x)f(y)=0.

‘The following properties of nodal domains of an eigenfunction f of a

Schrodinger operator can be easily verified.

(a) Everypointx € V liesinsomenodaldomain X C V.

(b) If V is a nodal domain then it contains at least one point x € V with f(x) # 0
and f has the same sign on all non-zero points in X. Thus each nodal-domain
can be called either “positive” or “‘negative”.

(c) If two nodal domains X and X’ have non-empty intersection then f] ., =0
and X, X" have oppositesignor X = X’,

The following result generalizes Courant’s nodal domain theorem for
Riemannian manifolds, see [81], to arbitrary connected graphs.

PROPOSITIONG6
The eigenfunction f; has at most k nodal domains.

Proof
See [82]. O

REMARK

The second-largest eigenvalue of Graph, often called the algebraic connectivity,
and its eigenvectors, which are sometimes referred to as characteristic valuations,
have received some attention in graph theory [83-85]. The case k=2 of
Proposition 5 was proved already in 1975 by Fiedler [86]. Stuart Kauffman [87]
calls this type of landscape “Fujijama’, because they have only a single mountain
massive (positive nodal domain).
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5. Autocorrelation functions and coherent configurations
5.1. AUTOCORRELATION FUNCTIONS ON PARTITIONS

The use of “‘random walk” correlation functions for characterizing landscapes
has two disadvantages: (i) the information on the landscape is “‘blurred” by the
transition matrix T of the walk, and (ii) samples along a random walk converge
slowly compared to sampling independent pairs of configurations. For these rea-
sons most of the results on the correlation structure of RNA landscapes, where the
evaluation of f is extremely costly in terms of computer resources, have been
obtained in terms of the correlation functions p(d), which is defined as the average
correlation of all pairs (x, y) of vertices with distance d(x, y) = d[15,17,25]. In this
section we link this approach to the theory of the “random walk” correlation func-
tions developed above.

It is convenient to formulate our discussion in terms of partitions of the set of
(ordered) pairs of vertices V' x V. Recall that there is a canonical metric on the ver-
tex set ¥ of any connected graph I'. The distance d : ¥V x ¥V — N{ on V is defined
as the minimum number of edges separating two vertices. If I is finite, then there is
a maximum distance, which is called the diameter d* of I'. The properties of the dis-
tance on V are discussed in detail in the book [88)]. The metric d(, ) induces in a nat-
ural way the distance partition® of V' x ¥V which has the classes

Dy © {(x,y) € V | d(x,y) = d}. (28)

The distance partition seems to be the most natural and useful partition of ¥ x V.
The subsequent discussion will show, however, that this is true only for sufficiently
“symmetric’’ graphs I'. For the moment we consider arbitrary partitionsof V' x V,
postponing the problem of choosing the partitions until the following subsections.

DEFINITION
Let R be a partition of ¥ x V and suppose f : ¥ — R is nonconstant. Then the
correlation function p : R — [—1, 1] of f with respect to R is defined by

P E s 3 (1) =1 0) 7)), (29)

S (xy)ex

where X is a class of the partition fR.

Let us note a few general properties of correlation functions on partitions. A matrix
X with entries

1 if (x,y) e X,
X,, & { if (x,y ) (30)
0 otherwise,

is associated with each class A € R. In order to simplify the formalism in the fol-
lowing we will always assume that f = 0. Since both r(s) and p(X) are invariant
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under the transformation f(x) — f(x) — f we can do this without loosing general-
ity. Thus we have

VSN
W =@ ey

LEMMAS

Let R be a partition of V' x ¥ and let f be a non-constant landscape on V.

Lemma 8 means that there is no “average correlation” in a sample of random
points, because | X|/|V|* is the probability that two randomly picked points x and y
form a pair (x,y) € X.

The diagonal of V- x VisT o {(x,x) | x € V}; the associated matrix is the iden-
tity matrix I. The transpose of aclass X' € Ris

Xt {(3,x) | (x,9) € X}.

If X is the matrix associated with the class X, then its transpose X7 is associated
with the class X*. The definition of p immediately implies

p(X) = p(X*) and p(I)=1. (32)

The following two conditions seem to be quite natural for our purposes:

DEFINITION

Let R be a partition of ¥ x V. Following Higman [89] we call R a pre-coherent
configuration if the implication XY N Z # @ = X C 7 holds and if for any X € Rwe
havealso X+ € R.

The symmetry of p under transposition might suggest to require X = X* and
Z € R. For technical reasons (which will become clear later on) it is wise to abstain
from these more stringent conditions. Since we are given not only the set ¥ but also
the neighborhood structure of I it seems natural to require that it is in some way
respected by the partition R. The edge set E of " translates into to the set

A {(x,y) | {xy} € E} =Dy (33)
of ordered pairs of vertices. The matrix associated with A is of course the adjacency
matrix A of T".

DEFINITION
A partition R of V x V compatible with " if X N A # 0 implies X C A for all
X e R

Unfortunately, pre-coherent configurations compatible with I" are still too gen-
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eral to allow for an interesting theory. In the following section we will therefore
introduce one more condition on fR.

5.2. COHERENT CONFIGURATIONS

DEFINITION

A pre-coherent configuration R is coherent if for all classes X, )V, Z € R the fol-
lowing statement is true:

The numbers |{z € V| (x,z) € X and (z,y) € V}| & p%y are the same for all
pairs (x,y) € Z.

The numbers pgy are called the intersection numbers of R.

Coherent configurations have been studied in detail by Higman [89-91]. The
highlights of his theory will be outlined later on in this subsection.

Let R = {R1,R2,...R,} and G = {851, Sy, ... S;} be two partitions of a set W.
We say that R is a refinement of G if for all k € [1,r] thereis aj € [1, 5] (depending
on k) such that Ry C S;. The number of classes in a partition is called its rank. We
write G < R because the ranks fulfill |G| <|R]|.

The partition M of ¥ x V with classes {(x, y)} forall x,y € V is called the maxi-
mum configuration, and the partition 91 consisting of the two classes Z and
K = {(x,y) | x # y} is called the minimum configuration of ¥ x V. It is easy to
check that both 9t and M are coherent. The following result provides a useful condi-
tion for compatibility with I":

LEMMA9
A coherent configuration R on V is compatible with I if and only if R is a refine-
ment of the distance partitionDon V x V,ie.,D < R.

Let I be an arbitrary graph with vertex set V, then the maximum configuration
M on ¥V is consistent with I". Of course 90 is not interesting in itself because it does
notcontain any information about I'. It guarantees, however, that the theory devel-
oped in the remainder of this contribution is well defined for all graphs. Clearly,
our considerations will be of interest only if I' admits compatible coherent config-
urations that are much coarse than 9. It will be shown in the following section that
the most interesting landscapes in fact “live’” on configuration spaces that admit
very coarse coherent configurations. The only graph with which the minimum con-
figuration Nis compatible, however, is the complete graph K|, with vertex set V.

The importance of coherent configurations comes from the algebraic properties
of the matrices associated with its classes.

PROPOSITION7
The partition R of V' x V is a coherent configuration if and only if the matrices
associated with the classes of & fulfill:
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) TymX=1.

(1) Tisthe sum of some elements of R.
(i) X € Rimplies X* € R.

(V) XY =3 ;cnpHZ.

Proof
See [89,91]. ]

The matrices associated with the classes of & form therefore (the standard basis
of) an algebra (9) that is (i) closed under the component-wise (Schur or
Hadamard) product, (ii) closed under ordinary matrix multiplication and (iii)
closed under transposition. Conversely, any matrix algebra fulfilling (i), (ii), and
(ii1) has a standard basis of the above form, i.e., there is a one-to-one correspon-
dence between coherent configurations and matrix algebras of this type, for which
Higman [91] has introduced the term coherent algebra. The condition for compat-
ibility with I translates to ““(9R) is compatible with I" if and only if the adjacency

3

matrix A of 'is contained in (R)”.

PROPOSITION 8 A
AThe matrices defined by Yz = piy ﬁor all X, Y, Z € R form a matrix algebra
(fR), the so-called intersection algebra. (R) is isomorphicto ().

Proof
See [89,91]. ]

It will sometimes be necessary to consider additional conditions on R. The most
important ones have been considered already in Higman’s papers:

DEFINITION
A coherent configuration R is

o homogeneousif T € R;

e commutative if piy =p3y for all X, Y, ZeR, ie, if XY =YX for all
X,Y € (R);

o symmetricif ¥ = X*forall X € R.

Higman [89] showed that symmetry implies commutativitity which in turn
implies homogeneity. Conversely, a homogeneous coherent configuration with
rank |R| <5 is already commutative [89, (4.1)]. Commutative coherent configura-
tions have important applications in coding theory [9,293]. They have been studied
extensively under the name association schemes by Delsarte [94]. Symmetric coher-
ent configurations are oftentimes terms symmetric association schemes or simply
association schemes; the matrix algebra associated with them is known as Bose—
Mesner algebra[95].
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The adjacency matrix A of a graph I' generates an algebra (), the so-called adja-
cency algebra of T', see e.g. [54]. Now let R be a coherent configuration compatible
with I. Since A € R it is clear that the adjacency algebra is a subalgebra of the
coherent algebra (fR). It has been shown [89] that () = (fR) if and only if R is com-
mutative. This result can be used to explicitly construct R for some graph types, see
[96].

Not all graphs admit interestingly small coherent configurations. On the other
hand there are interesting classes of graphs that give rise to very coarse coherent
configurations. A prominent example are distance regular graphs, which have
attracted a lot of interest in discrete mathematics, as the recent monograph [97]
shows. As an immediate consequence of their definition we have the following

REMARK

I'is distance regular if and only if its distance partition © is a coherent configura-
tion. Examples include the Hamming graphs and the Johnson graphs but not the
Cayley graphs of the symmetric group discusses in the previous section.

In the following subsection we will briefly review a very general construction
for coherent configurations. All this material is known in the literature, it will serve,
however, as an additional motivation for the application of coherent configura-
tions to the study of landscapes.

5.3. GRAPH AUTOMORPHISMS

An automorphism of the graph " = (¥, E) is a one-to-onemap o : ¥ — V such
that a(x) and a(y) are adjacent if and only if x and y are adjacent. The set of all
automorphisms of a graph forms a group under composition, the so-called auto-
morphism group Aut[l']. It is a permutation group acting on the set V.

Now consider a permutation group G acting on a finite set . On V' x V is acts
component-wise: a(Xx, y) def (a(x),a(y)). The orbits of Gon ¥V x V are called orbi-
tals. They form a partitionCon V' x V.

PROPOSITIONS

The partition € of V' x V induced by the orbitals of a group G acting on V is a
coherent configuration. The coherent algebra (€) coincides with the centralizer
algebra of the permutation representation of the group G.

Proof
See [89,98,99]. U

Thus any graph I" with a non-trivial automorphism group Aut{I'] admits a coher-
ent configuration € < 91 that is strictly coarser than the maximum configuration
M. Important properties of the permutation groups translate into the properties of
coherent configurations discussed at the end of the previous section:
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PROPOSITION 10

Let Gbe a permutation group acting on ¥ and let € be the coherent configuration
inducedon V x V. Then,

G is transitive & € is homogeneous,
G is multiplicity-free & € is commutative,
G is generously transitive <« € is symmetric.

Proof
See [99]. O

The first condition is of particular importance: All Cayley graphs have transitive
groups of automorphisms [100], and thus the corresponding coherent configura-
tions € are homogeneous. The Hamming graphs and the Johnson graphs, for exam-
ple, are distance transitive, i.e., for any two pairs of vertices (u,v) and (x,y)
fulfilling d(x,y) = d(u,v) there is an automorphism a such that a(x,y) = (u,v),
see, €.g., [97]. This implies in particular that Aut[I'] is generously transitive, i.e.,
that for any two vertices u,v € V' there is an automorphism fulfilling
a(u,v) = (v, u).

5.4. EQUITABLE PARTITIONS

DEFINITION

Let w be a partition of the vertex set V of I'. w is called equitable if the number
of neighbors which a vertex y € Y hasin class X is independent of the choice of the
vertexin Y. In other words, wis equitableif forall X, ¥ € wholds

Ay & P{y}nXx|= ZAxy forallye Y. (34)

xeX

We call A the collapsed adjacency matrix of T with respect to w. If an equitable par-
tition w contains a class wy = {u} consisting of a single vertex u € V we will say
thatitis anchored at (the reference vertex) u.

With each partition w of V into M + 1 classes there is an associated
(M + 1) x |V|matrix, which we will also denote by w. Its entries are

1 ifxekX,

Wxx = .
0 otherwise.

We remark that this definition is the transpose of the convention in Godsil’s book
[92], while it conforms the notation in Bollobas’ book [101]. Equitable partitions
have been introduced by Schwenk [102]; more recently they have been used by
Powers and coworkers under the name colorations, see, e.g., [103,104], see also
[64,Chap. 4]. The following lemma collects their most useful properties.
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PROPOSITION 11
Let w an equitable partition of the vertex set V of a graph I". Then the following
statements hold.
() wA=Aw.
(i1) If ¢is aneigenvector of A with eigenvalue 4, then v = w is a right eigenvec-
tor of A with the same eigenvalue u provided v # 0. For later reference we
note the explicit formula

v(X) =) elx). (36)
xeX
(ii) If vis a right eigenvector of A, then u(X) = (1/|X|)v(X) defines a left eigen-
vector of A.
(iv) Ifuisa lefteigenvector of A, then uw is an eigenvector of A which is constant
on all classes of w.

W) |X[[A%gy = |V|[A%yy foralls.

(vi) The characteristic polynomial of A divides the characteristic polynomial of
A.

(vii) IfTis connected then A and A have the same spectral radius.

(vi') If wis anchored at some reference vertex xo € ¥ then A and A have the same
minimal polynomial.

(vii") If w is anchored at some reference vertex xo € V then y is an eigenvalue of A
ifand onlyif pisaneigenvalue of A.

(viii) p(A) = p(A) for any polynomial p.

(ix) Ifwisanchoredatxo € Vthen[A’],, = [A] v
the same class of w.

x, Whenever y and ' belong to

Proof
See [92, chap.5] for the proofs of (i) through (vii). Properties (vi’) and (vii’) are
[101, Them.8.6], (viii) is [105, Lem.l], and (ix) follows from (viii) and

[A7],,, = [A7],,, = [A%],,y forally € ¥ which s true because {xo} is a class of w on
its own.
DEFINITION

Let 3 be a partition of ¥V x V, and let xo € V. Then the partition R,, of V
anchored at (the reference vertex) xo € V has the classes

Axy = {x € V|(x,X0) € X}, (37)
where X € R.
It is trivial to check that {R,, is in fact a partition of V. Note that X, as defined

above can be empty. The interest in this constructions originates from the following
result:
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LEMMA 10

Let R be a coherent configuration on ¥ and let xo € V. Then fR,, is an equitable
partition of V anchored at the reference vertex xp. The entries of the collapsed adja-
cency matrix fulfill

Avy,= D r%y (38)

Ze
ZNA#£D

By eq. (38) the entries in A do not depend explicitly on the reference vertex xg. If
R is homogeneous, then none of the classes X', in the “projection” is empty, and
we can assume that the rows and columns of A are indexed by the classes of the
coherent configuration fR.

Note that the collapsed adjacency matrix A obtained from a coherent configura-
tion R as described above is contained in the intersection algebra (R). In fact, a
basis of (if{) is obtained by the same procedure:

PROPOSITION 12
Let R be a coherent configuration and xy € V. Then
Piy =Yz = Z Y, foranyz € Z. (39)
XEXxO
Proof
See[89]. O
PROPOSITION 13

Let R be a coherent configuration compatible with I'. Then (RR) is commutative
if and only if all eigenvalues of A are simple.

Proof
See [89]. U

The following proposition is the main result of [106]. In this paper w has been
assumed to arise from the orbits of a transitive automorphism group of I
However, only the properties of equitable partitions anchored at a reference vertex
xo € V are actually used for its proof.

PROPOSITION 14

Let I" be a D-regular connected graph with adjacency matrix A and let w be an
equitable partition of ¥ anchored at xo € V. Let g : w — R be a real valued func-
tion of the classes of o and define g* : N — Rby

40D (Z[Tﬂm)g( Y). (40)

Yew \ye¥t
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Then g* is an exponential function if and only if g is a /eft eigenvector of the col-
lapsed adjacency matrix A of T". In this case g*(s) = g({xo}) x (u/D)".

Proof

We sketch only the main ideas of the proof here. The details can be found in
[106].

(i) The first step is to construct bases of left eigenvectors {»} and right eigenvec-
tors {v;} of A that fulfill (u;,v;) = ¢;6; with constant ¢; > 0. This is possible since A
is diagonalizable. One can show furthermore that one may choose these bases such

that u({xo}) = v({x0}) = p(x0) = 1//IV].

(ii) The next step is to express [T*] , in terms of the collapsed adjacency matrix.

One finds explicitly
1 1 HEN S
[Ty, = =2 — |F7) »(¥)
ST~ S ()

(iii) The final step consists in expanding g w.r.t. the /left eigenvectors of A,
g(Y)=>" k bkuk( Y). Substituting this into the definition of g* yields after some cal-

culationg*(s) = (1/+/|V]) >k bx(px/ D). O
5.5. RANDOM WALKS AND COHERENT CONFIGURATIONS

In this section we link the simple random walks on I" with the properties of coher-
ent configurations that are compatible with I'. Our goal of course is to eventually
derive a relation between the “‘random walk” correlation function r(s) of a land-
scapes and its autocorrelation function p with respect to a coherent configuration
R onI'. The first step is to consider the structure of T in some detail.

LEMMA 11
Let T" be a D-regular (connected) graph with adjacency matrix A, and let
T = (1/D)A be the transition matrix of a simple random walk on V.
(a) If w is an equitable partition of ¥ anchored at xy € V, then we have for each
class Y € wandally € Y:

yxo ] Y] ; yXxo *

(b) IfRisahomogeneous coherent configuration on ¥ and compatible with I', then
foreachclassY € Randeach xy € V holds

3T, :[_117] 3 s]m e 9. (41)

ye Y (ylx())ey

We are now in the position to derive a simple geometric relationship between
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r(s) and p(X). The following lemma establishes a generalized version of a well
known result for the distance classes of a distance tramsitive graph, see e.g.
[15,52].

LEMMA 12

Let I" be a connected D-graph, let R be a homogeneous coherent configuration
compatible with I" and let f be a non-constant landscape on I', with “‘random walk”
correlation function r(s) and correlation function p with respect to R. Then

r(s) = Z Fsxp(X) . (42)

XeR

THEOREM 2
Let I be a connected D-regular graph with adjacency matrix A and let R be a
homogeneous coherent configuration on ¥V compatible with I". Furthermore let f
be a non-flat landscape on I" with ““‘random walk” correlation function (s). Then:
The autocorrelation function p of f with respect to R is a left eigenvector of A
if and only if r(s) is an exponential.

Proof
Choose an arbitrary )gofe V and consider the equitable partition Ry,.
Furthermore define g(X,,) = p(X)forall X € R. Then,

def Z Z T yxo g(Vy,) = Zﬁsyp r(s)

Vs meo yeny YeR

is the “random walk’ correlation function of f as an immediate consequence of
Lemma 12 above. Proposition 14 guarantees that g* is exponential if and only if g is
a left eigenvector of A. Recalling that we may consider A indexed by the classes of
Rinstead of by the classes of R,, completes the proof. O

5.6. ASSOCIATION SCHEMES AND DISTANCE REGULAR GRAPHS

Suppose that R is a symmetric coherent configuration (i.e., a (Symmetric) asso-
ciation scheme) compatible with the D-regular graph I'. Then the algebra (2R) coin-
cides with the adjacency algebra of T', i.e., any X € (fR) is a polynomial in A [89].
Thus the ONB {¢;} of the Laplacian simultaneously diagonalizes all the matrices
associated with the classes of R. The corresponding eigenvalues are known as the
eigenvalues of the association scheme, Xy; = p,(X)p; for all X € R, see [92,

p-225].
Now consider the correlation function of a basis vector ¢; with respect to fR:
det | V| {1, X i V
w,()\’) _gl___]_(‘Pl 90>_| lpz(X) (43)

IXI <90i,90i) _|X|
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As a consequence of Theorems 1 and 2 we know that w; is a left eigenvector of the
collapsed adjacency matrix, wiA = puw;. Proposition 11.iii implies that
vi(X) = | X|w;(X) is the corresponding right eigenvector. Consequently we find that
p; itself is a right eigenvector of A. This is a well known result in the theory of dis-
tance regular graphs [97, sect. 4.1.].
The functions w; fulfill the orthogonality relation
v

X;‘}Mu,(.ﬁd)wj(){’) m()\z) 61J ! (44)
where m()\;) is the multiplicity of the i-th eigenvalue of the Laplacian of I, see [97,
Prop.2.2.2.].

Even more is known if the graph I is distance regular. An association scheme is
called P-polynomial if the matrices D, corresponding to the distance classes can be
written as polynomials of degree d in terms of the adjacency matrix A. An associa-
tion scheme is P-polynomial if and only if it consists of the distance classes of a dis-
tance regular graph, see e.g. [92, sect. 12.3]. The Hamming graphs Q) and the
Johnson graphs J(n, k) are of this type, while the Cayley graphs of the symmetric
group are not distance regular, see [107] for the adjacency algebra of I'(Ss, 7).

Suppose I' is distance transitive; then for any two points (x,y) € V with distance
d(x,y) = d there are ¢(d) neighbors of y with distance 4 — 1 from x and b(d) neigh-
bors of y with distance d + 1 from x. The functions w;(d) & w;(Dy) fulfill the fol-
lowing recursion:

cld) — X\ e(d
w,(d—f—l)— 1+ (b)(d) 'w,(d)—g(«%w,(d-—l), w,(O):l, (45)
for 1<d<d*. In this expressions A; is as usual the eigenvalue of the graph
Laplacian corresponding to w;. Furthermore it can be shown that the w; form a sys-
tem of orthogonal polynomials [108]. We present here the explicit expressions for
the Hamming and Johnson graphs, see also Table 2.
Hamming graphslead to Krawtchouk polynomials:

(46)

Krawtchouk polynomials play an important role in coding theory [109,110]. The
Hahn polynomials are the terminating hypergeometric series of type

=, (a1);(a2);(a3); Z
F -b . d_i_f J J ]
3 2(a17a29a31 l,b?.)z) 12:1: (bl)J(bZ)] _]' )
where Pochhammer’s symbol (a); is defined by (a); =a(a+1)...(a+/j—1) and
(a), = 1. The polynomials associated with the Johnson graphs are
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Table 2
Parameters for Hamming and Johnson graphs. ‘
Y2
0N J(n, k)
Order V] o )
Degree D (a-Dn k{n—~k)
Diameter d* n minlk,n — k]
Eigenvalue X Jjo Jn—=1+7)
Multiplicity ~ m();) (a-1)" (J) mly (})
Polynomial W Krawtchouk, eq. (46) Hahn, eq. (47)
b(d) (= 1)(n—-d) (k—d)(n—k—d)
c(d) d a4
Kk
w;l (d) = 3F2(“d1 _la —n+ (l - 1)’ ’—(n - k)) —k7 1)
! (“l)j(“n + (1= 1))j
=S ), (47)
=0 J "")j(_ )j

6. Summary

A mathematical framework for the analysis of (fitness) landscapes on regular
graphs has been developed. By a landscape we mean a given function f defined on
finite set V' of configurations together with a neighborhood relation between con-
figurations that allows us to consider the “‘configuration space’ as an undirected
graph. The basic ingredient of this theory presented here is the “Fourier series”
implied by the geometry of the graph that underlies the landscape. More precisely,
we use an expansion of the landscape in terms of an orthonormal base of eigenfunc-
tions of the Laplacian operator of the configuration space upon which the land-
scape f is built, see section 3.

We call a landscape elementary if it consists of an eigenfunction of the graph
Laplacian plus an arbitrary constant function. The landscapes of a large number of
important examples from spin glass physics to combinatorial optimization are of
this type, among them the Sherrington—Kirkpatrick spin glass and the travelling
salesman problem, see section 4.

Two types of correlation functions are commonly used for characterizing and
comparing landscapes: “Time-series’” sampled along random walks give rise to the
“random walk” correlation function r(s) of a landscape, see section 2. Partitioning
the set of all pairs of configurations into suitable classes, such as the classes induced
by the natural distance measure between configurations. The autocorrelation func-
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tion p(X) of a given landscape with respect to a given partition of the configuration
space can be defined in a canonical way. It has interesting properties provided the
partition is consistent with symmetry properties of the configuration space. For
example, the distance partition turns out to be the natural choice on sequence
spaces. In more technical terms, the partition must form a coherent configuration
compatible with the graph-structure of the configuration space, see section 5.

This contribution has been concerned with elucidating the relationships between
the Fourier-expansion of a given landscapes and its two correlation measures r(s)
and p(X). The main result of this paper characterizes elementary landscapes in
terms of their autocorrelation functions. Summarizing Theorems 1 and 2 we have:

MAIN RESULT

Let I" be connected D-regular graph, and let R be a homogeneous coherent con-
figuration which is compatible with I". Furthermore let f be a non-flat landscape on
I’ with “random walk’ autocorrelation function r and autocorrelation function p
with respect to R. Then the following statements are equivalent:
(1) fiselementary.
(i) f — flisaneigenvector the Laplacian —A of I' with a positive eigenvalue.
(iii) risoftheformr(s) = a~*(with—1<a < 1).
(iv) pisa left eigenvector of the collapsed adjacency matrix A of I' (with an eigen-

value smaller than D).

Since any landscape on I' is necessarily a superposition of elementary landscapes,
so are their correlation functions. Thus suppose f = ) a;;, where —Agpy = Mgy
Let A,, p =0,..., M designate only the distinct eigenvalues, and let /, be an index
set such that A\, = ), if and only if k € I,. As usual we use )\ = 0 for the smallest
eigenvalue of —A. Define

Zke[ l k{
def A Lkel, 7R
Z Zk;éo |ak|

kel,

forall p # 0. Then we have
r(s) = By(1 /D). (48)
p#0

If furthermore all eigenvalues of the collapsed adjacency matrix A for which there
are non-zero coefficients in the Fourier expansion of f are simple then we have

=Y B, tp() (49)

p#0 uP (I

where u, is a left eigenvector of A belonging to the eigenvalue ),. This is true in par-
ticular for all landscapes on Hamming graphs and Johnson graphs.
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7. Discussion

Many important examples of landscapes are elementary, i.e., (up to an additive
constant) they fulfill a discrete analogue of the Helmholtz equation Af + M\ = 0.
Among them are Derrida’s p-spin models, and the landscapes of the best known
combinatorial optimization problems. Elementary landscapes exhibit a character-
istic distribution of local optima on the configuration space which depends cru-
cially on the corresponding eigenvalue A\ of the Laplacian. In particular, the
“location” of X in the spectrum of the Laplace operator determines the maximum
number of nodal domains, that is the maximum number of disconnected islands of
values of f that are above average. The analogy with the properties of the eigen-
functions of the Laplacian on a Riemannian manifolds strongly suggests the con-
jecture that a landscape has to be more rugged if it corresponds to a higher “‘excited
state” in the spectrum of the Laplacian. In fact, the nearest neighbor correlation on
the landscape is directly linked to the eigenvalue A\. More precisely, the set of all
autocorrelation functions forms a simplex spanned by suitably normalized left
eigenvectors of the collapsed adjacency matrix of the configuration space. The cor-
responding eigenvalues determine the decay of the correlation function along a sim-
ple random walk on the landscape.

The relation between the Fourier expansion of a landscape and the computa-
tional complexity of the optimization problem on the landscape is of great impor-
tance for devising practical optimization heuristics. Disappointingly, there seems
to be no simple relation. Most of the elementary landscapes discussed in this paper,
such as the TSP, are NP-complete, but have only a fairly small number of nonzero
Fourier coefficients, namely those corresponding to a single eigenvalue of the con-
figuration space.

The formalism derived in this contribution suggests to approximate a given land-
scape by a superposition of elementary landscapes, in particular if we do not have a
closed form but only a computationally costly algorithm for evaluating it at parti-
cular configurations such as, for example, in the case of RNA secondary structure
models. The elementary landscapes depend only on the configuration space and
can be obtained explicitly in many cases, in particular for all sequence spaces with
constant chain length (i.e., Hamming graphs). In practice it is even easier to directly
compute the correlation functions of elementary landscapes. By the Main Theorem
one needs only the collapsed adjacency matrix of the configuration space, which is
small enough in many cases that numerical solutions can be obtained even if an ana-
lytical expression is unknown, as in the case of TSPs. A comparison of the autocor-
relation functions obtained from computational studies of the landscape of interest
with the correlation functions of elementary landscapes on the same configuration
space allows to estimate the amplitudes B;, that is the coefficients of the decomposi-
tion of the “experimental” correlation function into the elementary ones. These
amplitudes can be used as an easy means of describing the landscape. On a Boolean
hypercube, for instance, the amplitudes B, have a very intuitive interpretation: they
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measure the relative importance of p-ary (spin) interactions. As an example we have
seen in section 4.2. that the landscape of the “low autocorrelated binary string
problem” consists of two “‘modes”: An asymptotically vanishing contribution of a
2-spin model and a dominating mode corresponding to a 4-spin model.
Asymmetric TSPs, as another example, consists of two modes, corresponding to
the symmetric and the anti-symmetric part of the cost matrix. A study of the
decomposition of RNA landscapes into ‘“modes” corresponding to elementary
landscapes is reported elsewhere [111]. Of course, even a complete understanding
of elementary landscapes is only the first chapter in the story of landscapes: What
can be said about the superposition of elementary landscapes, even if the structure
of the elementary parts is known in detail?

Many open questions remain. Are there better bounds than Courant’s theorem
on the number of nodal domain of an elementary landscape? What is the precise
relation between the eigenvalue and the number of local optima in an elementary
landscape? How much of the theory outlined in this contribution carries over to
configuration space with less symmetry, such as spaces of finite trees? Is an analo-
gous formalism meaningful for potential energy hypersurfaces on continuous
spaces, in particular for the energy surfaces of biological macromolecules? Can we
devise a comparable formalism for the combinatory maps of sequence-structure
relations [22], where the image of a configuration is not a real-valued fitness but an
element of an abstract metric space?

Acknowledgements

Stimulating discussions with P. Anderson, B. Davies, A.W.M. Dress,
W. Fontana, A. Karpfen, R. Palmer, P. Phillipson, Chr. Reidys, and G.P. Wagner
are gratefully acknowledged. The author is grateful to the German Max Planck
Gesellschaft for supporting his stay at the Santa Fe Institute in 1993 where the work
on this manuscript began.

Appendix: Proofs
Proofof Lemma I

Let 6x,(x) = 6xx,- Then the probability that x, = z is given by the z-coordinate
of [T*6,,]. Thus

T
(F(x)y,, = lim —1—2;1—1] S F(2)(T6),

t xg€EV zeV
—gim 3 LS py T’(Z«S )}
S Ty X
TADOT—*—lt:OI ]zeV xo€V ’ z
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T—»ooT-%-lZ[V[ZF(Z)[Tll

eV

Since I'isregular we have T1 = 1, and therefore

1 R R
<F(x,)>x0,—}_,OOTHZ]V,ZF@=%‘_‘.20T+1ZF'

zeV t=0

Since F is constant in “‘time” we have (F (X)) xou = F- OJ

Proofof Lemma 2
Asin the proof of Lemma 1 we start with

1 &1 .
(F (Xtasy X1)) 0 = YI"EEOT—HZ]_V[.; Z (7', 2)[T°6:], [T'6x, ],

=0 7€
T
= lim —— Z (2, 2)[T*6,] {T‘(Z 6XOH
T T+ 14 V] 52 xoeV
lim — ZT: S L CATS
= P —— TIA 3 2 zly
Toeo T+ 1 V] 5 i
o R AT
- 2z
[ Vl z eV i
By definition we have [T*6;],, = [T’], ,; this completes the proof. O

Proofof Corollary 1
Use Lemma 1 with F =f and F = f?, respectively, and Lemma 2 with
F(x,y) = f(x)f (»). Substitution into the definition of r(s) completes the proof. [

Proofof Lemma 3

A1l =0 implies that f = f — f*1 is an eigenvector of —A with eigenvalue A
Thus f either constantand A = 0, or A > Oand (f,1) = 0.Inthe first case f itselfisa
flat landscape with f(x) f = f forall x € V. Inthe second case we have

VIF =Y f(x) = (1) +/(1,1) =0+7"|V].

xeV

Consequently, if f is elementary, then the constant f* coincides with the mean value
f of the landscape f. Connectedness of I" implies that 0 is a single eigenvalue and
thus f must be an eigenvector belonging to an eigenvalue A > 0. The converse is tri-
vial: a landscape of the form (6) is always elementary. O
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Proofof Lemma4

The Laplacian —A of K, has only two distinct eigenvalues, A\p = 0 with multipli-
city 1 and eigenvector 1, and the n — 1-fold degenerate eigenvalue A\; = n[64]. Thus
any non-constant f is of the form c1 + ¢ with some constant ¢ € R and (p,1) =0,
i.e., pisaneigenvector belonging to A;. 0

Proofof Lemma 5
It is convenient to allow arbitrary indices, setting o, =0 forallg < 1 or g > n.

With this convention we have

n—1 n—k n—k
fo) = Z DD o0k
=1 i=1 j=I
n—1 n—k
= 0i0i4+k0j0j+k + O; ka'?o'z—%k + 02012+k + 0'10',2+k0'1+2k
k=1 i=1 |j#i—k,ii+k
n—1 n—k n—~1 n—k
+ Z Z Oi—kOisk + Oi0iya] + Z 0i0i+k0i0jtk -
=1 k=1 i=1 ji-kiitk

Using the definition of €... (o) and eliminating all terms containing a o, with
g < lorg > ncompletes the proof. O
Proofof Corollary 2

The functions ¢, ;,.;,, where all indices i are different, are eigenfunctions of
the Laplacian — A of the Boolean hypercube belonging to the eigenvalues A,. Eq. (9)
in the proof of Theorem 1 implies that

b
(1 —4/n)’ +a—(1 —8/n)*

r(s)‘a+b +b

where a and b are the sums of the squares of the coefficients of €; and €4, respec-
tively. Since all coefficients are 0 or 1 we simply need to count all non-zero terms in
Lemma 5. We find that a = O(n?) and b = O(n3), and the corollary follows. OJ

Proofof Lemma 6

Without loosing generality we can consider the neighborhood of the identity per-
mutation ¢, since the numbering of the cities is arbitrary.

(1) In the case of transpositions we start with Grover’s [58] formula

J(G0)) =S (8) =Wiimt + Wigrj + Wijor + Wi
= Wiie) = Wit = W1 — Wity
+ (61 + Gim1) (Wi + W) .
Summing over all i # j yields 2Af () = 4X — 4nf (¢) + 2f () + 2*(¢) and analo-
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gously we obtain 2Af™* (1) = 4X — 4nf* (1) + 2f*(¢) + 2f(¢), where X is the sum over
all non-diagonal entries of W. The proposition follows immediately.
(ii) In case of inversions we find
-1
Fk N = f(4) = Wik—1 + Wis1k — W1 — Wig1g + Z(WNH — Wjs1)) -
J=k
Summing over all & # [ yields

28/() = 2 — 20 () + " D10 - £ )]

A completely analogous result is obtained for Af*(.), and a short calculation then
completes the proof. Il

Proofof Lemma7

Without loosing generality we may evaluate the cost function of the identity per-
mutation ¢ since the labeling of the vertices is arbitrary. Using the labels k of the
matched pairs as indices we have to following five types of neighbors, and the corre-
sponding changes of the cost function for each of them

(11 [Waj—12i + Waic12j] — [Waic1,2i + Waj—12]]
(127]  [Wajai + Waj—12i-1] — [Waic12i + Waj—12],
[21']  [Waiigj-1 + Waipj] — [Waic1,2i + Waj—12]
22 [Waic12j + Wajm12i] — [Waic12i + Waj—12],  and

[1 1] Waizict — Waic12i -

Summing the first four terms over all i # j (i.e., counting each neighbor twice)
yields

[oe] + [oe] — 21 () = 2(n/2 — 1)f(¢) + [ee] + [0o0] —d — 2(n/2 — 1)f (1)

+ [00] + [ee] —d — 2(n/2 = 1)f (1) + [o€] + [o€] = 2f (1) = 2(n/2 = 1)f (1),
where [o€], etc., denotes the sum over all Wj; with odd i and even j, and d is the
sum over all diagonal entries Wkk Using that W is symmetric, i.e., [oe] = [eo], this
sum may be written as 2Af (1) =23, 1)f(¢), since the transposition

(2i — 1, 2i) gives a contribution of 0. Tﬂus we have Af( )=2(n-D[f —f),ie.,
A= 2(n — 1), and f iselementary on the Cayley graphs I'(:S,, 7). O

Proofof Lemma8
From the definition of p we find
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, 14 14
;E;p(«v) | x| = W><f, (;‘ )f> A

where J is the matrix with all entries 1. It is straightforward to check Jf = |V|f1,
and thus (f,If) = |V|*f2 = O

Proofof Lemma 9

This statement is equivalent to claiming that X N D, # @ implies X C D, if and
only if Ris compatible with I'. The “only if”” part is trivial.

Assume thus that R is compatible with I'. We proceed by induction in d. The
claim is true for d = 0 since R is pre- coherent, and for d = 1 by compatibility with
I'. Suppose now, that the claim is true for all distances up to d and consider a pair of
vertices (x, y) with distance d(x, y) = d + 1. Let Z be the class of R to which (x, y)
belongs. The triangle inequality implies that there 1s z € V' such that d(x,z) =
andd(z,y) = 1andlet (x,z) € X and (z, y) € Y C A. Therefore pZ,, > 0. Now con-
sider an arbitrary pair (x', ') € Z. Since p% %y > 0 there is at least one 2/ € V which
fulfills d(x,z) =d and d(Z,y)=1. The triangle inequality implies
d(X,y')<d + 1.1fd(xX,y') < d + 1 wehave Z N Dy # () for some h<d and thus, by
the induction hypothesis, Z C Dj. This contradicts d(x,y) = d + 1. We conclude
d(x',y') = d + 1 and therefore Z C Dyy,. O

Proofof Lemma 10
Consider threeclasses X, ), Z € Rand an arbitrary vertex xo € V. We have

=|{zeV|(x,z) € X and (z,y € V}| V(x,x) € Z
=|{z€Vy | (x,2) e X} Vxe2Z,
On the other hand we obtain
Axyy, =Hz €V | (x2) € A} = XEC;I{Z € Vx| (x,2) € XY

for all x € Z,,. Comparing this with the above representation of the intersection
numbers yields

A Z
Axxoym = Z Pxy;

Ze
ZNA#D
which is independent of the representatives of the classes by definition. Thus R,
is equitable. It remains to show that R, isin fact anchored in xo. X C 7 implies that
Xy, is either empty or Xy, = {xo}. By definition there is some X C 7 that contains
(x0,x0), and thus {xg} € Ry,. N
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Proofof Lemmall

(a) By proposition 11.ix we know that [A] . = [A’] ,, whenever y and y’ are in
the same class of w, and thus the same holds true for the powers of T. Thus we have
forallye Y

Y [T, = YT,
yeyY

(b) Since R is a coherent configuration and compatible with I' we may write
A’ =73 vem baxX, and thus A'is constant on the classes of R. Furthermore, we have
shown in Lemma 10 that the projection ), is an equitable partition anchored at x;.
Thus we have Zyey [T°),,, = |IV|[T’],,,, where the second factor on the r.h.s.
depends only on the class Y to which the pair (y, xo) belongs. The first factoris

Val={y e V| x) €V}
={y€ Vl(y1x0) € Y and (XO:y) 6y+} =P§+ya

where X is the class of % to which (xo, xp) belongs. Since R is homogeneous by
assumption we have X' = 7, and thus |Y,,| = pf;w forall xy € V. Consequently we
have | Y| = | Vl - |Yx,| and the first factor is independent of xy as well. We have

Z }’xﬂ Z Z T5 )’XD

(3 %)€Y XEV yeYy,

and part (b) of the lemma follows immediately. |

Proof of Lemma 12
_ We begin with the definition of r(s). Without loosing generality we assume
f= Ozmdcr2 = 1. Thus

r(s) = ZZ o B (0) = Z > DTl

xgE VyeV xoeV Y € yEYx,

As a consequence of Lemma 11.a we have

. 1
r(s) = |V]Z Z (ZT]yXo)szf(y)f(xo)’

X€V Viy €Rg \ 2€Y. YEYVx,

and using Lemma 11.b we may rearrange this as

) mZZ lyxolsz""

x€V Vi €Rp Y€Yxg
=3 Y7 Z ly DS (x0) =) wm Y. ).
YeRr xoeV xﬂ Y€Vx, YeR (xp)ey

Substituting the definition of p())) completes the proof. 1
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