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Fitness landscapes are an important concept in molecular evolution. Many important 
examples of landscapes in physics and combinatorial optimization, which are widely 
used as model landscapes in simulations of molecular evolution and adaptation, are 
"elementary", i.e., they are (up to an additive constant) eigenfunctions of a graph 
Laplacian. It is shown that elementary landscapes are characterized by their correlation 
functions. The correlation functions are in turn uniquely determined by the geometry of 
the underlying configuration space and the nearest neighbor correlation of the elemen- 
tary landscape. Two types of correlation functions are investigated here: the correlation 
of a time series sampled along a random walk on the landscape and the correlation func- 
tion with respect to a partition of the set of all vertex pairs. 

1. I n t r o d u c t i o n  

Since Sewall Wright 's  seminal paper  [1 ] the not ion of  a f i t ne s s  landscape underly- 
ing the dynamics of  evolut ionary optimization has proved to be one of  the most  
powerful  concepts in evolut ionary theory. Implicit in this idea is a collection of  gen- 
otypes arranged in an abstract  metric space, with each genotype next to those other 
genotypes which can be reached by a single mutat ion,  as well as a value assigned to 
each genotype. Such a construction is by no means restricted to biological evolu- 
tion; Hamil tonians  of  disordered systems, such as spin glasses [2,3], and the cost 
functions of  combinator ia l  optimization problems [4] have the same basic struc- 
ture. It has been known since Eigen's [5] pioneering work  on the molecular  quasis- 
pecies that  the dynamics of  evolut ionary adapta t ion (optimization) on a landscape 
depends crucially on detailed structure of  the landscapes itself. Extensive computer  
simulations, see, e.g., [6,7] have made  it very clear that a complete understanding of  
the dynamics is impossible without  a thorough investigation of  the underlying land- 
scape [8,9]. 

The landscapes of  a number  of  well known combinator ia l  optimization problems 
such as the Traveling Salesman Problem (TSP) [10], the Graph  Biparti t ioning 
Prob lem (GBP) [11], or the Graph  Matching Problem (GMP)  have been investi- 
gated in some detail, see [12-14]. A detailed survey of  a variety of  model  landscapes 
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derived from folding RNA molecules into their secondary structures has been per- 
formed recently [6,7,15-26]. 

Most of the knowledge about landscapes has so far been derived using statistical 
methods, considering random models of landscapes rather than a single landscape. 
The distribution of local optima and the statistical characteristics of down-hill 
walks have been computed for the uncorrelated landscape of the random energy 
model [27-29]. Furthermore, two one-parameter families of tunably rugged land- 
scapes have been studied extensively: the Nk model and its variants [ 17,30-32] and 
thep-spin models [33-36]. Local optima of 2-spin models are considered in [37-41]. 
While the statistical approach is the natural one, e.g., in the physics of spin glasses, 
it seems to be rather contrived in evolutionary biology because it is by no means 
clear what a reasonable statistical model should look like, even if there is a compu- 
tational procedure to model the landscapes of, say, RNA free energies. 

A theory of landscape is based on three ingredients: we are given a finite, but very 
large set V of "configurations" and a "fitness function" f : V ~ I~. The third 
ingredient is a notion of neighborhood between the configurations, which allows us 
to interpret V as the vertex set of a graph F. We will refer to F as the configuration 
space of the landscapef. Let us briefly discuss two examples here: 

Consider the set of RNA molecules of given chain length n. A particular mole- 
cule x can be represented as a string of length n taken from the alphabet 
{G, C, A, U}; molecular biologists call this string the sequence of the RNA. The 
"fitness" funct ionf  is, for instance, the free energy of folding x into its secondary 
structure [15]. In silico the folding is done by an algorithm containing a large num- 
ber of experimentally determined parameters [42]. In nature as well as in in vitro 
experiments variation is introduced by mutations, predominantly point-mutations. 
Neighboring sequences are thus those that differ in only a single position. The 
resulting graph is known as the sequence space [43,44]. 

A very different example is the travelling salesman problem. A salesman starts 
from his home city and visits exactly once each of the n cities on a given list, then he 
returns home. The configurations are the possible tours, i.e., all permutations of 
the cities on the salesman's list. The numerical value assigned to a particular tour "r 
is its total lengthf('r). The notion of neighborhood between different tours is much 
less obvious here than in the biological example above. Usually one says that two 
tours are neighbors if they can be interconverted by a simple operation on the list of 
cities, such as swapping two cities (transpositions), or inverting the order of a con- 
tiguous part of the list. It turns out that the performance of an optimization heuris- 
tic depends crucially on the choice of the neighborhood relation. We will return to 
this topic later in this contribution. 

Conceptually, there is a close connection between the (biological) landscapes 
and the Potential Energy Surfaces (PES) that constitute one of the most important 
issues of theoretical chemistry [45,46]. As a consequence of the validity of the Born- 
Oppenheimer approximation, the PES provides the potential energy as a function 
of the nuclear geometry of the system, U(R). PES are therefore defined on a high- 
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dimensional continuous space and they are assumed to be smooth (at least twice 
continuously differentiable). The (global) analysis of PES thus makes extensive use 
of differential topology. The analysis of discrete landscapes, on the other hand, 
requires different techniques. For instance, the critical points of a PES, character- 
ized by V U(R) = 0, have no obvious discrete counter part. 

A successful approach towards understanding protein folding [47] is to approxi- 
mate the immensely complicated potential functions that are used in MM and MD 
simulations by simple lattice models, see e.g. [48] for a recent review. Due to the dis- 
cretization of real space, these models give rise to landscapes in the precise sense of 
this contribution. Current research in lattice heteropolymers centers around the 
kinetics and pathways of folding [49], i.e., on the "landscape analogue" of the reac- 
tion path problem of theoretical chemistry [50]. 

We shall be concerned here with static properties of landscapes rather than with 
dynamical processes (such as viral evolution of protein folding) that take place on 
landscape. The main theme of this paper is the relationship between the Fourier- 
expansion of a given landscapes f and its autocorrelation functions. Landscapes 
that are (up to an additive constant) eigenvectors of the Laplacian operator of the 
configuration space I" take center stage in the theory presented here. We shall refer 
to them as elementary landscapes. Two types of correlation functions will be con- 
sidered here: The autocorrelation function r(s) of a "time series" generated by a 
random walk on the configuration space, and the correlation function p(X) defined 
on suitable partitions of the set of all pairs of configurations. We will show that a 
landscape is elementary if and only if r(s) is exponential which is in turn equivalent 
to p(X) begin a left eigenvector of what is called the "collapsed adjacency matrix" 
of the configuration space. 

In section 2 we consider the properties ofr(s) in some detail. Section 3 is devoted 
to the Laplacian operator on graphs and the Fourier expansion of landscapes. We 
shall also prove the first part of the main theorem at this stage. Section 4 discusses 
the known elementary landscapes and reviews some the implications of elementar- 
ity. Correlation measures defined on partitions of the set of pairs of configurations 
are the subject of section 5. The second part of the main theorem will be proved 
there. The results of this contribution are summarized in section 6 and discussed in 
section 7. 

2. " R a n d o m  walk"  correlation functions of  landscapes 

Because of the extremely large number of configurations, 4 n for RNA and n! for 
the TSP for example, we need a condensed description of a landscape. Correlation 
measures relating the values of nearby configurations with each other seem to be a 
natural approach. We will show that the most useful definition of such a measure 
depends on the symmetry properties of the graph r = ( V, E), i.e., on the choice of 
the neighborhood relations. 
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DEFINITION 
For each landscapef  : V - ,  N ,  we define 

f de_f 1 Z f ( x  ) and # d e f  
I v  I xEV 

A landscape with @ = 0 is called flat. 

1 ~-~ [f(x) _ j~]2 = ~--ff _ f2" 
V Ix~v 

Note that o}f = 0 if and only i f f  is constant. The quan t i ty f  is the mean of the 
landscape, and o}f can beinterpreted as the variance of the landscape. There is noth- 
ing "statistical" about f or ~ .  Both quantities are well defined functionals of 
f :  V---, 1~, and they should not be mistaken for the averages over different 
instances which are commonly used in the analysis of statistical models of land- 
scapes. A discussion of the stochastic aspects of landscape models is presented else- 
where [51 ]. 

B o t h f  and o}f do not depend on the neighborhood structure implied by the edge 
set E of I'. Eigen and co-workers [8] have introduced correlation functions that 
depend on the Hamming distance in sequence space as a measure of the local struc- 
ture of fitness landscapes. Weinberger [52] proposed to use a simple random walk 
{x0, x l , . . . }  on the vertex set in order to sample a "time series" {f(Xo),f(Xl),...} 
and to use the autocorrelation function of this "time series" as a characteristic of 
the landscape. A simple random walk [53] on a graph P has transition matrix 
T ~r AD_I,  where A is the adjacency matrix of P and D is the diagonal matrix of 
vertex degrees with entries 

Axy  de f if {x,y} C E, and Dxy - vx,y Axz 6x,y[A1] x, 
otherwise, ze v 

respectively. Here 6x,y is the Kronecker symbol, and 1 d el (1, 1 , . . . ,  1) is the vector 
with all entries 1. 

The expected autocorrelation function of a "time series" sampled along a simple 
random walk on 1" is defined as 

F(S) def= ( f (x , ) f (x ,+,)Lo, ,  - (f(x,))xo,,(f(x,+,))xo,,  

v/(f (xt)2>xo,  t 2 2 2 - ( f ( x , ) L o , , ) ( ( f ( x , + , ) ) x o , , -  (f(x,+ALo,, 

where the notation (')x0,t emphasizes that the expectation is taken over all "times" 
t and all initial conditions x0. We will refer to r(s) as the"  random walk" correlation 
function of the landscapef  on P. Since the averages are taken over all initial condi- 
tions with uniform weights, the definition ofr(s) simplifies to 

r(s) = ( f ( x , ) f ( X t + s ) ) ~ , , -  (f(xt))~xo,t 
x 2 (1) 

(f(x,)2Lo,,- if( ,)Lo,, 
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Note  that, again, r(s) can be viewed as a functional o f f  : V ~ IR. While the defini- 
tion of  r(s) via the random walk is convenient for sampling data  f rom a given land- 
scape, say a particular instance of  a combinatorial  optimization problem or a 
model  of  the complicated energy function for protein folding, it is inconvenient 
f rom a mathematical  point of  view. Fur thermore ,  it seems to be rather contrived to 
invoke a stochastic process in order to characterize a given function defined on a 
finite set. We will therefore derive a representation of  r that  does not require the 
explicit assumption of  a random walk, at least for the case of  regular graphs. It is 
not  all clear that  r(s) is a useful measure of  a landscape on a more  irregular graph. 
To this end we need two prepara tory  lemmata #1 

L E M M A  1 

Let P be a regular graph and let F : V ~ IR be an arbi t rary function. Let {xt} 
be a simple random walk on I'. Then (F(xt))xo,t = E'. 

L E M M A  2 

Let F be a regular graph, and let F : V × V --+ ~.  Then 

1 Z F(x'y)[TI~xy " (F(xt+s, Xt))xo,t- I V ,  x,y~V 

The desired representation of  r(s) is now obtained as a corollary of  the above two 
lemmata.  

C O R O L L A R Y  1 

L e t f  : V ~ ~ be a non-flat landscape on a D-regular graph F with adjacency 
matrix A. Then 

1 (f ,  TSf) _j~2 
r(s) = Ivl 

f2  _ f 2  ' (2) 

where T = (1/D)A.  

R E M A R K  

Both for the proof  of  Lemma 1 and the proof  of Lemma 2 it is crucial that  
T1 = 1. Since each transition necessarily ends in some vertex x 6 V we have always 
1T = 1. In other words, instead of  insisting the F be a regular graph and that  the 
r andom walk be simple we could as well require that  T be a bi-stochastic, but  not  
necessarily symmetric,  transition matrix. This might be a starting point for an 
investigation of  landscapes on non-regular  configuration spaces. 

#1 In this contr ibution we will label a technical result as a "propos i t ion"  if  it is taken from the litera- 
ture, and as a " l e m m a "  otherwise. The proofs of  all lemmata  and their corrollaries can be found in 

the appendix. 



6 P.F. Stadler / Landscapes and their correlation functions 

3. Graph Laplacians and the i r  e i g e n f u n c t i o n s  

3.1. INCIDENCE MATRIX AND GRAPH LAPLACIAN 

The incidence matr ix  and the Laplacian matr ix  of  a graph can be viewed as dis- 
crete analogues of  the gradient  and  the Laplace opera tor  in Euclidean spaces. 

DEFINITION 
Let  I" be an arbi trary graph with vertex set V and edge set E. For  each edge 

h = {v, w} we choose one of  the two vertices as the "posi t ive end"  and the other  one 
as the "negat ive end"  of  the edge. The choice of  this or ienta t ion is complete ly  arbi- 
trary. The  matr ix  V + with entries 

+1 vertex vi is the positive end of  edge ej, 

V + = - 1  vertex vi is the negative end of  edge ej, 

0 otherwise.  

is called the incidence matrix ofF.  

The  choice of  the symbol V is intentional.  In fact, l e t f  : V ~ lt~ be an arbi t rary 
landscape.  Then  V f  : E --~ IR is given by 

(Vf)(h)  = f ( v )  - f ( w ) ,  where h = {v, w}, 

and  v is the positive end of  the edge h. This is as close to a differential  opera tor  as 
one can get on a graph. This rather  unusual  form of  the "grad ien t"  V is the reason 
why discrete landscapes cannot  be approached  like the smoo th  potent ia l  energy 
surfaces of  theoretical  chemistry. For  instance, the gradient  does not  vanish at  the 
local min ima  and max ima  in our  case. 

DEFINITION 
Let D be the diagonal  matr ix  of  vertex degrees, i.e., Dxx is the n u m b e r  of  edges 

incident  into x, and let A be the adjacency matr ix  of  I-'. Then the matr ix  

- A  = D - A (3) 

is called the Laplacian ofF .  For  D-regular  graphs,  i.e., graphs for which all vertices 
have degree D, this becomes A = A - DI. 

The  graph Laplacian shares its mos t  impor tan t  propert ies with the famil iar  dif- 
ferential opera tor  A = ~i~=1 ~ in N ~, as explained in some more  detail in Fig. 1. 

PROPOSITION 1 
(i) A is symmetric.  
(ii) - A  is non-negat ive definite. 
(iii) A is singular; the eigenvector 1 = ( 1 , . . . ,  1) belongs to the eigenvalue A0 = 0. 

Ifl" is connected (as we will always assume), then A0 has mult ipl ici ty 1. 
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Fig. 1. The graph Laplacian A is a generalization of the discrete approximation of the familiar 
Laplacian differential operator in IR n. This approximation is commonly performed by replacing the 
continuous space by a square lattice. Rescaling the space coordinates we can assume that the lattices 
points have integer coordinates. The first derivatives, evaluated at the mid-points of the edges, el, are 
computed from Of(e2)/Ox =f(x2) - f (O) ,  Of(e3)/Ox =f(O) - f ( x l ) ,  and analogous expressions for 
Of/Oy. Consequently, the second derivative evaluated in 0 become 02f(O)/Ox 2 = Or(x2)-f(O)) 
- ~ ( 0 ) - f ( x ] ) )  = f ( x l ) + f ( x 2 ) -  2f(O), and an analogous expression for 02f/Oy 2. The discrete 
approximation of the usual Laplacian hence coincides with the graph Laplacian of the square 

lattice. 

(iv) - A  = V+V, that is, it corresponds to "second derivatives" on the graphs. 
(v) For any two landscapesf andg Green's formula holds in the following form 

Zf (x ) (Ag) (x )  = Zg(x) (Af ) (x)  = _ Z(Vf)(h)(Vg)(h).  
xE V xE V hEE 

Proof 
(i) is obvious, (ii) and (iii) are well known, see, e.g., [54,55]. Claim (iv) is 

Proposition 4.8 of [54]. Green's formula (v) is easily checked by explicit calcula- 
tion: 

~_,(Vf)(h)(Vg)(h) = Z ~ ~ f ( X ) V h x V h y g ( y )  
hEE xEV yEV hEE 

=~f(X)(h~eEV+hVhY)g(Y)  

= - Z Z f(x)Axyg(y) = - Z f(x)(Ag)(x)' 
xEV yEV xEV 

A similar calculation shows Y-~h (XTf)(h)(Vg)(h) = Y'~x g(x)(A f)(x). [] 
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The graph Laplacian is central to the theory of electrical networks. As a reference 
we give KArchhoff's classical paper [56]. Let r/(x) be the current flowing into the net- 
work at vertex x. Then there is a potential • : V ~ ]E satisfying A,I~ = r/, and the 
vector ( = Vev. A recent book on potential theory on discrete lattices is [57]. 

Finally we note the following connection between the spectrum of a graph and 
the graph Laplacian: Suppose P is D-regular with adjacency matrix A. Then A and 
--A have the same eigenvectors, and thus the eigenvectors of  - A  are given by 
-Ak = #k -- D. 

3.2. FOURIER EXPANSION OF LANDSCAPES 

A series expansion in terms of  a complete and orthonormal system of  eigenfunc- 
tions of  the Laplace operator is commonly termed Fourier expansion. We will 
adopt  the same terminology here following [32]. Thus, l e t f  be a landscape on P and 
let {~oi} denote a complete orthonormal set of eigenvectors of  the graph Laplacian 
--A. Then we call the expansion 

IVl 
f (x )  = Z ai~oi(x) (4) 

i= 1 

a Fourier expansion of the landscape. It will often be convenient to label the eigen- 
vectors ~oi be the vertices of  the underlying graph P. This is possible because the 
eigensystem of  the finite symmetric matrix A is complete. In general, this labeling is 
of course arbitrary. 

Since we deal with a finite vector space with a scalar product,  for which we will 
use the notat ion (,), spanned by eigenvectors {~oi} of  the graph Laplacian, the 
familiar properties of Fourier series, such as Parseval's equation 

,;. ,2=    7;ylj • 
yEV 

Another  important  result is the mean square approximation theorem: 

PROPOSITION 2 

Consider a l andscapef  on P with Fourier expans ionf  = ~y~V a/py. Let X be a 
subset of  V, and consider approximations o f f  of  the form g = ~-~y~x by%,. Then the 
squared approximation error II f - g II 2= (0 c - g), (f - g)) is minimized by choos- 
ingby = ay = (f,  ~y) for ally ~ X. 

It is clear that landscapes which are eigenfunctions of the graph Laplacian will 
play a special role. It will turn out to be more useful, however, to consider a slightly 
larger class of landscapes. 
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DEFINITION 

A l a n d s c a p e f  : V - ~  N is elementary if there are constants f* and A such that 

Af  + A0c - f * l )  = 0. (5) 

This definition is motivated by Lov Grover's observation [58] that the cost func- 
tions of a number of well-studied combinatorial optimization problems in fact ful- 
fill eq. (5). This will be discussed in section 4. 

LEMMA 3 

A non-fiat landscape on a connected graph I' is elementary if and only if 

f ( x ) = J ' + : ( x ) ,  V x E  V ,  

where qo is an eigenfunction o f - A  with eigenvalue A > 0. 

(6) 

3.3. "RANDOM WALK" CORRELATION FUNCTIONS OF ELEMENTARY 

LANDSCAPES 

The "random walk" correlation function r(s) provides an elegant way of charac- 
terizing elementary landscapes. 

THEOREM 1 

Let f be a non-fiat landscape on a D-regular graph I" and let r(s) be the 
" random walk" correlation function off .  T h e n f  is elementary if and only if r(s) is 
an exponential function, i.e., iffr(s) = 0 s. 

P r o o f  
Let {qo} be an orthonormal set of real eigenvectors of the Laplacian on I', i.e., 

(-A)~oi = Xi~oi. Since 

2/, 
T = I + D - 1 A  = I +  D (7) 

we have Tqoi = (1 - AJD)~pi. Now substitute the decomposi t ionf  = ~-,i aiqoi into 
the definition ofr(s). One finds 

f 1 1 
r(s) = -- ~ aiaj(qoi, q@(1 - Ai/D) s - (~_~ ai-(--~ ~ (pi(x) 

I v l  u \ i , - , x ~ v  

a'a: l F_, :,(x)::(x) - a' : 

L' , id xev , , xeV / 



10 P. F Stadler I Landscapes and their correlation functions 

Recall  that  1 is always an eigenvector of  A, belonging to A0 = 0. By or thogonal i ty  
we have therefore ~,xeV qoi(x) = 0 for all i ~ 0, and c o n s e q u e n t l y f  = a0~-6. No t ing  
tha t  ~-,xeV ~i(X)~OJ(x) = (~ Oi' ~J) = 6ij we obtain 

l 12 (1 Ai/D) s -  [ ao [2 ~-62 
r(s) : ~ E i  I ai 

E i  [ ai 12 -- [ a0 12 ~-~2 

It  remains to compute  ~--~. We know qo0 = c l  with some constant  c ~ 0. 
Normal iza t ion  implies 1 -- c2(1, 1) = c 2 [ V I, i.e., qo0(x) = l /x/I  V I for all x c V. 
Subst i tut ing this into r(s) yields 

1 la012 1 12(1 Ai/D)S_laol2  1 r(s) = Iv--7 '~-~[Ei¢o [ a i  - -  IV--] 
I V---ila0 + ~ i ~ o l a i  - l a 0  

It is convenient  to in t roduce the normal ized ampli tudes  

Ai de__f [ai 12 
Ej+o l aj 12. (8) 

No te  that  a landscape is flat if and only i fAi = 0 for all i ~ 0. Thus  the normal ized  
ampl i tudes  are in fact well defined for all non-flat  landscapes. Fu r the rmore  A i  ----- 0 
is t rue for all i ¢- 0 and only if a i  = 0. The expression for r(s) simplifies consider- 
ably: 

r(s) = Z Ai(1 - Ai/D) s . (9) 
/ t 0  

Consequent ly  r(s) is an exponential  funct ion if and only if all nonzero  Ai belong 
to a single eigenvalue Ak of  A. This is the case if and only if f is of  the fo rm 
f = (a0/v/I V [)1 + ~o where ~p is an eigenvector of  - A .  Apply ing  L e m m a  3 com- 
pletes the proof.  []  

The " r a n d o m  walk"  correlat ion funct ion of  an elementary landscape is deter- 
def 

mined  by the single parameter  0 = r(1 ), which one might  call the nearest-neighbor 
correlation of  the landscape. We have 0 = (1 - Ak/D), where Ak is a non-zero eigen- 
value of  the graph Laplacian - A .  Since r(s) is exponential  we can define a correla- 
tion length gby  

0 i f 0 = 0 ,  
~de__f 1 (10) 

l n l o l  if 0 • 0 .  

Thus  the " r a n d o m  walk"  correlat ion funct ion is of  the fo rm r(s) = exp(-sg)  for 
> O, r(s) = ( -  1) s e x p ( - s / D  for 0 < 0, and r(s) = 6~,0 for 0 = 0. Table 1 at the end 

of  the following section compiles numerical  values of  0 and gfor  a few landscapes of  
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practical  interest. For  many  applications it is more  convenient  to define the correla- 
t ion length of  an arbi t rary l a n d s c a p e f  as 

o o  

def Z ( )  D~--~A/~ ~ -  r s v p -  i i .  

s=O i=0 

In the case of  an e lementary landscape we have thus g = D/~k, Lo = 1 -- l /g ,  and  
t h u s g  = g + 0 (1 )  as long as Lo > O, see e.g. [59,60]. 

4. E l e m e n t a r y  l a n d s c a p e s  

In this section we will briefly discuss a number  of  landscapes,  all of  which are ele- 
men ta ry  (or at least a lmost  elementary).  We will convenient ly subdivide our  discus- 
sion according to the type of  the conf igurat ion space underlying the landscapes. 
Three classes of  conf igurat ion spaces are of  part icular  importance:  (a) landscapes 
defined on sequences, (b) landscapes defined on permuta t ions ,  and (c) landscapes 
defined on a set of  subsets of  given finite set. In this contr ibut ion we typeset  
matr ices  only boldface if they are related to the conf igurat ion space F in some way. 
M a n y  of  the landscape models  discussed in the following contain  matr ices  of  
parameters  which will be typeset in italics. 

4.1. CAYLEY GRAPHS AND CARTESIAN PRODUCTS OF GRAPHS 

An impor tan t  class of  graphs with high symmetry  are obta ined f rom finite 
groups.  

DEFINITION 

Let (G, o) be a finite group,  and let ff be a set of  generators #2 of  G such that  (i) 
the g roup  identi ty L is not  contained in ,I), and  (ii) for each x E ~I, the inverse group 
element  x -1 is also conta ined in ~. The Cayley graph 1-'(G, ~) is the graph with ver- 
tex set G and {x, y} E E if and only if there is a g E • such that  y = gx, i.e., if and  
o n l y i f x y  -1 E ~. 

The  set of  generators  ff can be interpreted as the set of  all possible e lementary  
muta t ions ,  or - in the context  of  an opt imizat ion heuristic - as the move  set of  the 
a lgor i thm.  

Many,  but  by no means  all, of  the conf igurat ion spaces encountered  in this con- 
t r ibut ion are Cayley graphs,  in part icular  the H a m m i n g  graphs (generalized hyper-  
cubes) and the Cayley graphs of  the symmetr ic  group 5',. We will re turn  to their 
graph- theoret ic  propert ies later in this contr ibut ion.  In this section we will be con- 

#2 ~ C G is a set of generators if each group element z E G can be represented as a finite product of 
elements of (I,. 
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tent with showing that a variety of interesting landscapes are elementary on appro- 
priate graphs. 

For Cayley graphs of commutative groups the eigenvectors and eigenvalues have 
a particularly simple form. We exploit the fact that a finite commutative group has 
a unique decomposition into cyclic groups, see e.g. [61, § 13]: Let Ark be the orders of 
the cyclic groups. The cyclic group of order Nk in turn are isomorphic to the addi- 
tive group modulo Nk, and thus G is isomorphic to the group of "vectors" x = (Xl, 
x2, . . ., xm), 0 ~ Xk < Nk, under component-wise additions modulo Nk : 

x o y = (xl + y~ mod N l , x 2  + Y2 mod N2,.  . . ,x,n + Ym mod Nm) . 

The characters [62] of the commutative group G are given by 

• xkgk 
X~g(X) = exp (27rt ~ - - ' ~  . (11) 

Let I'(G, ~) a Cayley graph of G with graph Laplacian - A .  It is convenient to allow 
also for complex eigenvectors of the symmetric matrix - A ,  since it can be shown 
[63] that 

( - - A ) Xg  - ~ -  /~gXg holds with Ag = Z [ 1  - Xg(X)]. (12) 
xE~ 

In other words, the characters Xg of G are the eigenvectors of any Cayley graph 
derived from the commutative group G. 

Probably the simplest examples of Cayley graphs with commutative groups 
are the complete graphs Kn. Let G be a commutative group with n elements, for 
instance a cyclic group, and define • = G \ {L}, where L denotes the group iden- 
tity. Then 1-'(G, ~) has an edge between any two vertices, i.e., it is the complete 
graph K~. In terms of optimization procedures and their move-sets, the complete 
graphs correspond to random search: all configurations are accessible in a single 
step• 

L E M M A  4 

Let f be a non-constant landscape on the complete graph Kn with n vertices. 
T h e n f  is elementary. 

Elementary landscapes are thus only interesting when they "live" on non-trivial 
graphs with an interestingly rich spectrum o f - A .  

D E F I N I T I O N  

The (Cartesian) product Fl x F2 of two graphs has vertex set V(Fx × P2) 
= V(Fx) x V(F2). Two nodes (xl ,  x2) and (yl ,  y2) are connected if either (i) xl = Yl 
and x2, Y2 are adjacent in r2, or (ii) x2 = Y2 and x l ,  Yl are adjacent in Pl. 
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PROPOSITION 3 
Let I ~ = I'1 x I'2. Then 

(i) Let A(k 1) and A~ 2) be eigenvalues of the Laplacians of the two graphs F1 and P2, 
respectively. Then A is an eigenvalue of the Laplacian ofI ' l  x ['2 if and only if it 
is of the form A[ 1) + A} 2). 

(ii) Let U(k l) and u} z~ be eigenvectors of the Laplacian of I'l and I'2. Then u (1) ® u} 2) 
is an eigenvector ofF1 x P2. 

(iii) IfI'1 = P(Gl, ~I) and P2 = F(G2, ~2) are Cayley graphs then 

I~(G,, (I)1) × I~(O2, ~ )  = r~(G1 x O2, ({Lit  × (I~2) U ((I~ 2 × {g2})) 

is again a Cayley graph. 

Proof 
For (i) and (ii) see [64], claim (iii) is easily verified from the definition of the 

Cartesian product. [] 

Our interest in the Cartesian product of graphs comes from the fact that impor- 
tant classes of graphs can be constructed as repeated Cartesian products of very 
simple units. As an example consider the sequence spaces or Hamming graphs Qn. 
The vertices of these graphs are sequences of constant length n constructed from a 
fixed alphabet with a letters. Two sequences are adjacent if they differ in a single 
position along the sequence. Obviously Q~ ~ K~ is the complete graph with oe ver- 
tices. It is easy to check that Q~ = Q~-I x K~ for all n >j 2. 

4.2. LANDSCAPES ON THE BOOLEAN HYPERCUBE 

An orthonormal basis of eigenvectors of the Laplacian is easily constructed 
explicitly for Boolean hypercubes Q~. Without loosing generality we may use the 
alphabet {+ 1, - 1 }. A configuration is then a string a of"spins" ~rk E { + 1, -- 1 }. An 
alternative encoding uses a binary string x, with xi E {0, 1 }. The following result is 
well known: 

PROPOSITION 4 
Any landscapef on the Boolean hypercube can be written as 

n 
f (o )  = Jo + E E Ji, i2...i/ri, ai2...cri,, (13) 

p=l il<i2<...<ip 

where the Ji~i2...ip are constants. 
It is not hard to check that the products 

eq(Cr) = cri~cri2...trip, where q~c --- 1 if and only if k E i l , i2, . . .  ,ip}, 

are in fact eigenvector of the Laplacian of the Boolean hypercube because of the 
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correspondence £q(O') = )(.q(X) with ak = 2xk -- 1. Furthermore,  one finds that the 
eigenvalue corresponding to eq depends only on the numberp  of non-zero entries in 
the multi-index q, see e.g. [36]. One finds 

Ap = 2np with multiplicity m(Ap) = . (14) 
P 

Hamiltonians of the form 

~'~p(O') = Z Jili2""iP(Til°'i2"''°'iP (15) 
il <i2<...<ip 

play a prominent  role in the theory of spin glasses; they are known asp-spin models. 
It was introduced by Derrida [33] in order to bridge the gap between the SK model 
[65], which is the special casep = 2, and the random energy model [33,34,66,67]. In 
physics the coefficients are usually chosen i.i.d, from a Gaussian distribution. As a 
consequence of Proposition 4 above we can represent any landscape on the Boolean 
hypercube as a superposition of p-spin models with suitable choices of  the interac- 
tion coefficient Ji, i2,...,ip" Let us now consider a few examples: 

Weight Partition (WP). Given a string of n "spins" cri E { -1 ,  +1} n and corre- 
sponding weights wi, the cost function is given by 

f(cr) = wioi (16) 
i=1 

The move set is given by flipping a single spin, hence the configuration space is 
again a hypercube. Grover [58] showed that WP is elementary with A = 4 for any 
choice of the weights w;. 

Not-All-Equal-Satisfiability (NAES). Consider a vector of  n binary variables. 
A literal is a variable or its complement.  A clause is a set of three literals that does 
not  contain both a variable and its complement. A clause is said to be satisfied if at 
least one literal is 0 and at least one literal is 1. An instance of NAES is given by a set 
of e clauses, and the cost function is the number of non-satisfied clauses. The move 
set is defined by flipping the value of a single variable, thus the configuration space 
is the Boolean hypercube, Grover [58] showed that WP is elementary with A = 4 for 
any choice of clauses. 

Low Autocorrelated Binary Strings (LABSP). The LABSP [68,69] consists of  
finding binary strings cr over the alphabet { -1 ,  +1} with low aperiodic off-peak 
autocorrelation Rk(cr) U-k = Y'~i-1 criCri+k for all lags k. These strings have technical 
applications such as the synchronization in digital communicat ion systems and the 
modulat ion of radar pulses. The quality of a string a is measured by the fitness 
function 
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n - 1  

f(cr) = ~ Rk(~r) 2 . (17) 
k=l  

In most  of  the literature on the LABSP the merit factor F(cr) = n2/(2f(c~)) is used, 
see [69] for details. 

L E M M A  5 

The landscapef  of the LABSP can be written as 

[~]-1 n-2k  n-1 n - I  

E 
k=l i=l k=l  i=1 j¢i-k,i,i+k 

(18) 

C O R O L L A R Y  2 

The " random walk" correlation function of the LABS is of the form 

r(s) = [ l -O(1 /n)] (1- ! ) s+o(1 /n) ( l  - 4 )  s. (19) 

The landscape of the LABPS is thus not elementary, it consists of  a superposition 
of two modes, namely p = 2 and p = 4. The smoother p -- 2 contribution becomes 
negligible for large n, so t h a t f  behaves for long strings almost like an elementary 
p = 4 landscape. This fact explains why the LABPS has been found to be much 
harder for simulated annealing than, say, the SK spin glass [69]. This author [14] 
has computed the " random walk" autocorrelation function r(s) numerically based 
on the merit  factor F. The numerical estimate for the correlation length 

g ~ 0.123 x n - 0.983 

is in excellent agreement with the asymptotic value g = n/8 + 69(1) implied by the 
corollary. 

4.3. L A N D S C A P E S  O N  H A M M I N G  G R A P H S  

Boolean hypercubes are of course a special case of Hamming graphs. We have 
discussed them in a separate subsection because of their particular importance. 
Hamming  graphs with larger alphabets (a > 2) are of particular importance in 
biology: the sequences of nucleic acids, RN A or DNA, contain four different bases, 
and proteins use 20 different amino-acids. Just as for the hypercube, the Laplacian 
spectrum and an ONB of eigenvectors can be constructed explicitly [70,71 ]. 

Graph Coloring Problem (GCP). An instance of a graph coloring problem con- 
sists of  graph G( V, E) with n vertices and a collection of a different colors. A con- 
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f igurat ion x is an a-color ing of  the vertex set V, i.e., an ass ignment  of  one color x? 
to each ver texp  of  the graph. The cost funct ion is the number  edges {p, q} E E such 
that  xp = Xq: 

f ( x ) =  ~.~ ~x(p)x(q). (20) 
{p,qleE 

A move  is the replacement  of  one color by another  one at single vertex. The config- 
ura t ion  spaces are thus the general H a m m i n g  graphs, i.e., sequence spaces over the 
a lphabet  of  the a colors. Grover  [58] has shown that  each instance of  G C P  is ele- 
men ta ry  on Q~ with A = 2a. 

4.4. PERMUTATIONS: TRAVELLING SALESMAN AND GRAPH MATCHING 

The configurat ions  of  a family of  opt imizat ion problems can be represented as 
permuta t ions  of  finite number  n of  objects. Hence the symmetr ic  group Sn takes the 
role of  V. Natura l  choices of  move  sets are sets of  generators of  the Sn, and thus the 
conf igura t ion  spaces are Cayley graphs of  the symmetr ic  group.  The  mos t  conveni- 
ent sets of  generators  are: the set T of all t ransposi t ions (i,j), the set/C of  all canoni-  
cal t ransposi t ions  (i, i + 1), and the set 2- of  all reversals [i,j], which are also called 
inversions or 2opt-moves,  [72]. 

Travelling Salesman Problem (TSP). An instance of  a TSP [10] is defined by a 
set o fn  cities and matr ix  W of  costs for connect ing them. A tour  is pe rmuta t ion  ~r of  
cities, and  its cost is 

n 

fQr) = ~ w~(i):(i-1) , (21) 
i=1  

where the indices are taken m o d u l o  n. Different  versions of  the TSP are defined by 
the propert ies  of  W (arbitrary, or symmetric,  or with entries addit ional ly obeying 
the tr iangle inequality,  etc.; see [73]). 
In the following it will be convenient  to use 

f*(Tr) =f(Tr*) = Z w"cJ)'~0"+l) " 
J 

The  pe rmuta t ion  7r* is the "reverse order"  pe rmuta t ion  of  ~r, i.e., f*  (Tr) = f(Tr*) is 
the cost  of  the tour  7r when traveled in the opposite direction. Thusf(Tr) = f*  (Tr) for 
all ~r C S, is true if and only if the cost matr ix  W is symmetric.  Recall ing that  any 
matr ix  W can be uniquely decomposed  into its symmetr ic  c o m p o n e n t  W ~ 
= ( W +  W+)/2  and its ant isymmetr ic  componen t  W ~ = ( W  - W+)/2  we 
in t roduce 
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ff(Tr) = ~ w,~(j)~(/_,) _ f ( l r )  +f*(Tr) 
2 J 

f'~(Tr) = ~ w~o.)~j_l) =f(~r) - f*Qr)  
2 J 

Note  that f~  and f~  can be viewed as cost functions of  TSPs with "distance 
matrices" W ~ and W% respectively. 

LEMMA 6 

B o t h f f  a n d f  ~ are elementary landscapes on the Cayley graphs of the symmetric 
group with the transpositions and the inversions as generators, respectively. In par- 
ticular we have for transpositions 

A f ~ + 2 ( n - 1 ) ( f  ~ - f ) = 0 ,  A f  ~ + 2 n f  ~ ' = 0 ,  (22) 

and for inversions (2opt-moves [72]) we find 

//(n + 
1)ff~ = 0 (23) A / °  + n(f~-YT) = 0 '  AfrO4 2 

COROLLARY 3 
The landscape of a TSP with transpositions or inversions is elementary if and 

only if W is either symmetric or antisymmetric. 

Asymmetric TSPs hence provide an example of fairly simple composite land- 
scapes. They consist of two modes corresponding to the symmetric and the 
antisymmetric part  of the distance matrix W, respectively. It is also interesting to 
note in this context that canonical transpositions (i, i + 1) do not  lead to an elemen- 
tary landscape. Numerical data [74,12] have indicated that the " random walk" cor- 
relation functions r(s) of both the symmetric and the antisymmetric components  
are exponential. Theorem 1 now provides a mathematical explanation for this 
observation. 

The nearest neighbor correlations of  the symmetric and antisymmetric compo- 
nents of a TSP with transpositions are 0 = 1 - 4/n  and 0 = 1 - 4/ (n  - 1), respec- 
tively, i.e., very similar. In fact, numerical estimates [12] are consistent with 
0 ~ 1 - 4 /n  for large n in both cases. In the case of inversions we have a symmetric 
mode with nearest neighbor correlation 0 = 1 - 2/(n - 1) and an antisymmetric 
contribution with a vanishingly small contribution 0 -- - 2 (n  - 1) ~-, 0. 

It is interesting to correlate these values of 0 with known facts about the perfor- 
mance of  heuristic optimization algorithm, in particular with the simulated anneal- 
ing. It has been observed by several authors that simulated annealing on symmetric 
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TSP is much more effective when reversals instead of  transpositions are used as 
move set, see, e.g., the books [75,76]. Furthermore,  Miller and Pekny [77] have 
observed that reversals are a remarkably inefficient move set for asymmetric TSPs. 
These observations are in accordance with the conjecture that landscape with 
smoother correlation functions have fewer local optima and are thus easier to opti- 
mize on [12]. In particular the difference between symmetric and asymmetric TSPs 
when reversals are used is easily explained in these terms: while for the symmetric 
TSP the landscape is as smooth as possible, it is extremely rugged for the antisym- 
metric case. 

Graph Matching Problem (GMP). Given a graph G with n vertices and a sym- 
metric matrix W of  edge weights, the task is to partition the graph into n/2 pairs of 
vertices such that the sum of the edge weights corresponding to these pairs is opti- 
mal. A convenient encoding of the problem is the following. Let 7r E Sn be a permu- 
tation of the vertices. We assume that the vertices are arranged such that 
[Tr(2k - 1 ), 7r(2k)] form a pair. The cost function is then 

n/2 

f o r )  = ~ w~(~-l),~(2k). (24) 
k=l 

Again, the configuration space is the symmetric group, and hence the set of  all 
transpositions is a reasonable move set. 

LEMMA 7 

The landscape of the graph matching problem GMP with transposition metric 
is elementary with A = 2(n - 1). 

Note  that this result is false if W is not symmetric. 

4.5. LANDSCAPES ON JOHNSON GRAPHS 

Another  class of configuration spaces arises if the configurations can be regarded 
as subsets of  some finite set. 

DEFINITION 

Let X be a finite set, n = IX[, and let S~ be the collection of  k-element subsets of 
X. The graph J(n, k) has vertex set Sk and two vertices are adjacent if the corre- 
sponding subsets of X have k - 1 vertices in common. J(n, k) is called Johnson 
graph. 

Only one example of this class has received extensive attention so far. 

Graph Bipartitioning Problem (GBP). G is a graph with an even number n of  ver- 
tices and H is a symmetric matrix of edge weights. A configuration is a partit ion of  
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the vertex set into two subsets A and X \ A of equal size. Two bipartitions 
[A, X \ A] and [B, X \ B] are neighbors ifB is obtained from A by exchanging a ver- 
tex from A by a vertex from X \ A. Thus the configuration space is the Johnson 
graph J(n, n/2). The cost function is 

U([A,X\  A]) = Z Z H/j, (25) 
iEA j6X\A 

i .e . , f  is the total weight of all edges connecting A and X \ A. As a close relative of 
the Sherrington-Kirkpatrick model the GBP has received considerable attention 
[11]. Grover [58] found that each instance of the GBP is an elementary landscape 
with A = 2(n - 1 ), see also Table 1. Stadler and Happel [24] have shown by explicit 
calculations that the "random walk" correlation function of the GBP on J(n, n/2) 
is 

( 8 )  s 
r ( s ) =  1 8+~- 2 , (26) 

?l 

in accordance with Theorem 1. 

4.6. N O D A L  D O M A I N S  OF S C H R O D I N G E R  OPER ATOR S  

In this contribution we are only interested in eigenfunctions ~p of the Laplacian 
operator - A .  The following interesting result can, however, be proved for a much 
larger class of operators acting on landscapes. Let a be a weight function on the 
edges ofF,  conveniently defined as a: V x V --~ IR such that a(x, y) = a(y, x) > 0 if 
{x,y} E E and a(x,y) = 0 otherwise. Furthermore let v : V ~ IR be an arbitrary 
"potential". A linear operator H, defined by the action 

Table 1 
Summary  of the elementary landscapes that are described in section 4. 

Problem F D A 0 

NAES Q~ n 4 1 - 4 

W PP  Q~ n 4 1 - 4_ n 

p-spin Q~ n 2p 1 - n 

G C P Q:  (c~ - 1)n 2~ 1 - 

¼n i , , +  (~) - ~ - ~  O ' 

2~ n -- 1_2 -- £16n -t- O(n-$1 ) 

~ 1  n 1 ct , , 
- + 6-razr/~ + o(~) 

symmetric F(S. ,  7") n(n - 1)/2 2(n - 1) 1 - 4 

TSP F(Sn, J )  n(n-  1)/2 n 1 2 n-- ,  

anti-symmetric F(S, ,  7") n(n - 1)/2 2n 1 4 n-- ,  

TSP F(S., ,.7) n(n - 1)/2 n(n + 1)/2 2 n - ,  

G M P  r(Sn,7") n(n-  1)/2 2(n - 1) 1 - ~  

1 in 2 l_~. + O(ln-3n) Inn 

, , , 1  , an - ~ - ~ + O ( ~ )  

GBP J(n,n/2) n2/4 2 ( n -  1) 1 - ~ + ~ 8  8 ~n 83 24. 131 + O ( ~ )  
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Hf(x)  def ~ a(x,y)[f(x) --f(y)] + v(x)f(x), (27) 
x ~ y  

is called a Schrbdinger operator. Setting a(x,y) = 1 if {x,y} E E, i.e., a(x,y) 
= Axy, and choosing v(x) = 0 shows that the graph Laplacian - A  is in fact a 
Schr6dinger operator. Discrete Schr6dinger operators without potential can be 
interpreted as Laplacians of edge-weighted graphs [78]. 

The Perron-Frobenius theorem implies that the smallest eigenvalue A1 of 7-[ is 
nondegenerate and the corresponding eigenfunction)q is positive everywhere if I? is 
connected. Let 

A1 < A2~<A3~ < . . .  ~<Ak-l~Ak~Ak+l~. . .  ~AIV [ 

be the list of eigenvalues of H arranged in non-decreasing order and repeated 
according to the multiplicity #3. Let fk be any eigenfunction associated with the 
eigenvalue Ak. Without loosing generality we may assume that {j~} is a complete 
orthonormal set of eigenfunctions satisfying HJ~ = Afi. Since H is a real operator, 
we take all eigenfunctions to be real. 

A configuration x E V is a local minimum if f(x)<~f(y) for all neighbors 
y E O{x} ofx. Correspondingly x is a localmaximum iff(x) >~f(y) for all y E O{x}. 
Local optima are the very feature of a landscape that makes it rugged. Local optima 
are traps of optimization heuristics and evolutionary adaptation. An understand- 
ing of the distribution of local optima is thus of utmost importance for the under- 
standing of a landscape. The relation between the correlation length g and the 
number of local optima of an (elementary) landscape has been the subject of recent 
numerical simulations [60,79]. These studies support the conjecture [12] that there 
is roughly one local optimum within each ball in I" with a radius that is determined 
by the correlation length g, see also [80]. Little can be said about the geometric 
arrangement of local optima for an arbitrary landscapef.  The situation is slightly 
better for elementary landscapes. 

PROPOSITION 5 
L e t f  be an eigenfunction of H with eigenvalue A > 0. If x0 is a local maximum 

o f f  then v(x0) ~<A impliesf(x0) t>0 and v(xo) >~A impliesf(xo) <~0. If x0 is a local 
minimum o f f  then v(xo)<~A implies f(x0)~<0 and v(xo)>~A implies f(x0)~>0. In 
particular, ifv =- 0 then all local maxima are non-negative and all local minimal are 
non-positive. 

Proof 
If x0 is local maximum than f(xo) -f(y)>>-0, and hence Hf(x0)>>-v(xo)f(xo). 

Using t h a t f  is an eigenfunction yields Af(xo) >~v(xo)f(xo). Using that A>~0 yields 

#3 Note that in this subsection we count the eigenvalues starting at 1 instead of 0 as in the rest of this 
contribution. 
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the assertion for a local maximum. The argument for local minima is analogous. 
I fv  -= 0, i.e., i f H  is a Laplacian of an edge-weighted graph, the case A <~v(xo) con- 
tradicts A > 0. The special case H = - A  is Theorem 6 in [58]. [] 

Some more global information can be obtained on the distribution of positive 
and negative valued of an eigenfunctionf of a Schr6dinger operator. This leads us 
to the notion of nodal domains. In a continuous setting one defines the nodal set of 
a continuous func t ionf  as the preimagef- l (0) .  The nodal domains are the con- 
nected components of the complement o f f  -I (0). In the discrete case this definition 
does not make sense since a function f can change sign without having zeroes. 
Instead we use the following: 

DEFINITION 
X is a nodal domain ofa  funct ionf  : V -0 ~ if it is a maximal subset of V subject 

to the two conditions 
(i) X is connected as an induced subgraph ofF; 
(ii) i fx ,  y E X t h e n f ( x ) f ( y )  >i0. 

.The following properties of nodal domains 
Schr6dinger operator can be easily verified. 
(a) 

(b) 

(c) 

of an eigenfunction f of a 

Every point x E V lies in some nodal domain X C V. 
If V is a nodal domain then it contains at least one point x c V wi thf(x)  ¢ 0 
a n d f  has the same sign on all non-zero points in X. Thus each nodal-domain 
can be called either "positive" or "negative". 
If two nodal domains X and X ~ have non-empty intersection t h e n f l x n  x, = 0 
and X, X ~ have opposite sign or X = X'. 

The following result generalizes Courant's nodal domain theorem for 
Riemannian manifolds, see [81 ], to arbitrary connected graphs. 

PROPOSITION 6 
The eigenfunctionfk has at most k nodal domains. 

Proo f  
See [82]. [] 

REMARK 
The second-largest eigenvalue of Graph, often called the algebraic connectivity, 

and its eigenvectors, which are sometimes referred to as characteristic valuations, 
have received some attention in graph theory [83-85]. The case k = 2 of 
Proposition 5 was proved already in 1975 by Fiedler [86]. Stuart Kauffman [87] 
calls this type of landscape "Fujijama", because they have only a single mountain 
massive (positive nodal domain). 
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5. Autocorrelat ion funct ions  and coherent configurat ions  

5.1. AUTOCORRELATION FUNCTIONS ON PARTITIONS 

The use of  " random walk" correlation functions for characterizing landscapes 
has two disadvantages: (i) the information on the landscape is "blurred" by the 
transition matrix T of the walk, and (ii) samples along a random walk converge 
slowly compared to sampling independent pairs of configurations. For these rea- 
sons most  of the results on the correlation structure of R N A  landscapes, where the 
evaluation o f f  is extremely costly in terms of  computer  resources, have been 
obtained in terms of  the correlation functions p(d), which is defined as the average 
correlation of  all pairs (x, y) of vertices with distance d(x, y) = d [15,17,25]. In this 
section we link this approach to the theory of the " random walk" correlation func- 
tions developed above. 

It is convenient to formulate our discussion in terms of  partitions of  the set of  
(ordered) pairs of vertices V x V. Recall that there is a canonical metric on the ver- 
tex set V of any connected graph I'. The distance d : V x V --~ N + on V is defined 
as the min imum number  of edges separating two vertices. If I" is finite, then there is 
a maximum distance, which is called the diameter d* ofF.  The properties of  the dis- 
tance on V are discussed in detail in the book [88]. The metric d(, ) induces in a nat- 
ural way the distance partition ~ of V x V which has the classes 

Dd def {(x,y) E V Id(x ,y  ) = d}.  (28) 

The distance partit ion seems to be the most  natural and useful partit ion of  V x V. 
The subsequent discussion will show, however, that this is true only for sufficiently 
"symmetr ic"  graphs P. For the moment  we consider arbitrary partitions of  V x V, 
postponing the problem of choosing the partitions until the following subsections. 

DEFINITION 

Let ~ be a partit ion of V x V and s u p p o s e f  : V --+ IR is nonconstant.  Then the 
correlation function p : 91 --+ [ -  1, 1] o f f  with respect to 91 is defined by 

p(X) de_f 1 
iX(: ~r 2 Z [(f(x) - f ) ( f ( y ) - f ) ] ,  (29) 

f (x,y)EX 

where X is a class of the partition 91. 

Let us note a few general properties of correlation functions on partitions. A matrix 
X with entries 

def~'l  if (x,y) E X ,  
Xxy (30) 

L 0 otherwise, 

is associated with each class X E 9l. In order to simplify the formalism in the fol- 
lowing we will always assume that f = 0. Since both r(s) and p(X) are invariant 
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under  the t r a n s f o r m a t i o n f ( x )  ~ f(x) - f  we can do this wi thout  loosing general- 
ity. Thus  we have 

p(X) = I vl ( f '  Xf )  
IXl ( f , f )  (31) 

LEMMA 8 

Let fit be a par t i t ion of  V x 
Then  ~-,xe~ p(X). IX[ = 0. 

V and let f be a non-cons tan t  landscape on V. 

L e m m a  8 means  that  there is no "average correla t ion" in a sample of  r a n d o m  
points,  because IxI/I vI 2 is the probabil i ty that  two randomly  picked points  x a n d y  
fo rm a pair  (x, y) E A'. 

The  diagonal of  V x V is Z ~r  { (x, x) I x E V}; the associated matr ix  is the iden- 
tity matr ix  I. The t ranspose of  a class X E ffl is 

X + ~f  {(y,x) I (x,y) ~ X} .  

I f  X is the matr ix  associated with the class X, then its t ranspose X + is associated 
with the class X +. The definit ion o fp  immediate ly  implies 

p(X) =p(X +) and p(27) = 1. (32) 

The  fol lowing two condi t ions seem to be quite natural  for our  purposes:  

DEFINITION 

Let ffl be a par t i t ion of  V x V. Fol lowing Higman  [89] we call N apre-coherent 
configuration if the implicat ion X N 27 ¢ ~ =~ X C_ 2" holds and if for any X E 9'1 we 
have also X + ~ 9~. 

The  symmet ry  of  p under  t ransposi t ion might  suggest to require X = X + and 
27 C ~ .  Fo r  technical  reasons (which will become clear later on) it is wise to abstain 
f rom these more  str ingent  conditions.  Since we are given not  only the set V but  also 
the ne ighborhood  structure of I" it seems natural  to require that  it is in some way 
respected by the par t i t ion 9~. The edge set E of  I" translates into to the set 

.4 ~f {(x,y) I {x,y} C E} = 791 (33) 

of  ordered pairs of  vertices. The matr ix  associated with .4 is of  course the adjacency 
matr ix  A o f t .  

DEFINITION 

A par t i t ion ~l of  V x V compatible with I" if X A .4 ¢- 0 implies X c_ .4 for all 
X E f f l .  

Unfor tuna te ly ,  pre-coherent  configurat ions compat ible  with I" are still too gen- 
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eral to allow for an interesting theory. In the following section we will therefore 
introduce one more condition on 91. 

5.2. COHERENT CONFIGURATIONS 

DEFINITION 

A pre-coherent configuration 91 is coherent if for all classes X', y ,  Z E 9l the fol- 
lowing statement is true: 

The numbers ]{z E V[ (x,z) E 2( and (z,y) E Y}[ derp~y = are the same for all 
pairs (x,y) E Z. 

The numberspff,.y are called the intersection numbers of 91. 

Coherent configurations have been studied in detail by Higman [89-91]. The 
highlights of his theory will be outlined later on in this subsection. 

Let 9l = {~1, T¢2,... TCr} and ® = {$1, $2 , . . .  Ss} be two partitions of a set W. 
We say that 9l is a refinement of ® if for all k E [1, r] there is a j  E [1, s] (depending 
on k) such that TCk _C Sj. The number of classes in a partition is called its rank. We 
write ® _~ 91 because the ranks fulfill 1911. 

The partition 93I of V x V with classes { (x, y) } for all x, y E V is called the maxi- 
mum configuration, and the partition 92 consisting of the two classes Z and 
/C = {(x,y) I x ¢ y} is called the minimum configuration of V x V. It is easy to 
check that both 0Jr and 91 are coherent. The following result provides a useful condi- 
tion for compatibility with I': 

LEMMA 9 

A coherent configuration 91 on V is compatible with P if and only if91 is a refine- 
ment of the distance partition ~ on V x V, i.e., ~ ~ 91. 

Let I" be an arbitrary graph with vertex set V, then the maximum configuration 
9Yt on V is consistent with 1-'. Of course 9)t is not interesting in itself because it does 
not contain any information about F. It guarantees, however, that the theory devel- 
oped in the remainder of this contribution is well defined for all graphs. Clearly, 
our considerations will be of interest only if I" admits compatible coherent config- 
urations that are much coarse than 93t. It will be shown in the following section that 
the most interesting landscapes in fact "live" on configuration spaces that admit 
very coarse coherent configurations. The only graph with which the minimum con- 
figuration 9I is compatible, however, is the complete graph K I vl with vertex set V. 

The importance of coherent configurations comes from the algebraic properties 
of the matrices associated with its classes. 

PROPOSITION 7 

The partition 91 of V × V is a coherent configuration if and only if the matrices 
associated with the classes of 91fulfill: 
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(i) }-'~XE~I X = J. 

(ii) I is the sum of some elements of 91. 
(iii) X E 91 implies X + E 91. 

Z z  (iv) XY = Y~zeg~Pxy • 

Proo f  
See [89,9 1 ]. [] 

The matrices associated with the classes of 91 form therefore (the standard basis 
of) an algebra (fit) that is (i) closed under the component-wise (Schur or 
Hadamard) product, (ii) closed under ordinary matrix multiplication and (iii) 
closed under transposition. Conversely, any matrix algebra fulfilling (i), (ii), and 
(iii) has a standard basis of the above form, i.e., there is a one-to-one correspon- 
dence between coherent configurations and matrix algebras of this type, for which 
Higman [9 1] has introduced the term coherent algebra. The condition for compat- 
ibility with P translates to "(fit) is compatible with P if and only if the adjacency 
matrix A o f f  is contained in (91)". 

PROPOSITION 8 

The matrices defined by Yxz = P,~y for all A', y,  Z E 91 form a matrix algebra 
(ffl), the so-called intersection algebra. (91) is isomorphic to (fit). 

Proo f  
See [89,91]. [] 

It will sometimes be necessary to consider additional conditions on 91. The most 
important ones have been considered already in Higman's papers: 

DEFINITION 

A coherent configuration 91 is 
• homogeneous ifZ E 91; 

commutative if P~cy- z for all • - Pyx 
x , Y  E 

• symmetric i f  P( = 2( + for all 2( E 91. 

A', 3;, Z E 9t, i.e., if XY = YX for all 

Higman [89] showed that symmetry implies commutativitity which in turn 
implies homogeneity. Conversely, a homogeneous coherent configuration with 
rank [911 ~< 5 is already commutative [89, (4.1)]. Commutative coherent configura- 
tions have important applications in coding theory [9,293]. They have been studied 
extensively under the name association schemes by Delsarte [94]. Symmetric coher- 
ent configurations are oftentimes terms symmetric association schemes or simply 
association schemes; the matrix algebra associated with them is known as Bose-  
Mesner algebra [951. 
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The adjacency matrix A of a graph P generates an algebra (9.1), the so-called adja- 
cency algebra ofF,  see e.g. [54]. Now let fit be a coherent configuration compatible 
with ['. Since A E 9~ it is clear that the adjacency algebra is a subalgebra of the 
coherent algebra (9~). It has been shown [89] that (91) = (9~) if and only if fit is com- 
mutative. This result can be used to explicitly construct 9~ for some graph types, see 
[96]. 

Not  all graphs admit interestingly small coherent configurations. On the other 
hand there are interesting classes of graphs that give rise to very coarse coherent 
configurations. A prominent  example are distance regular graphs, which have 
attracted a lot of  interest in discrete mathematics, as the recent monograph  [97] 
shows. As an immediate consequence of their definition we have the following 

REMARK 

I" is distance regular if and only if its distance partition ~ is a coherent configura- 
tion. Examples include the Hamming graphs and the Johnson graphs but not  the 
Cayley graphs of the symmetric group discusses in the previous section. 

In the following subsection we will briefly review a very general construction 
for coherent configurations. All this material is known in the literature, it will serve, 
however, as an additional motivation for the application of coherent configura- 
tions to the study of  landscapes. 

5.3. GRAPH AUTOMORPHISMS 

An automorphism of the graph I ~ = ( V, E) is a one-to-one map a : V ~ V such 
that a(x) and a(y) are adjacent if and only if x and y are adjacent. The set of all 
automorphisms of  a graph forms a group under composition, the so-called auto- 
morphism group Aut[F]. It is a permutat ion group acting on the set V. 

Now consider a permutat ion group G acting on a finite set V. On V x V is acts 
component-wise: a(x, y) de__f (a(x), a(y)). The orbits of G on V x V are called orbi- 
tals. They form a partition ~ on V x V. 

PROPOSITION 9 

The partit ion ¢ of V x V induced by the orbitals of a group G acting on V is a 
coherent configuration. The coherent algebra (¢) coincides with the centralizer 
algebra of  the permutat ion representation of  the group G. 

Proof 
See [89,98,99]. [] 

Thus any graph I ~ with a non-trivial automorphism group Aut[r]  admits a coher- 
ent configuration ¢ -~ 99I that is strictly coarser than the maximum configuration 
~ .  Impor tant  properties of the permutat ion groups translate into the properties of 
coherent configurations discussed at the end of the previous section: 
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PROPOSITION 10 
Let G be a permutation group acting on V and let ¢ be the coherent configuration 

induced on V x V. Then, 

G is transitive ¢* ¢ is homogeneous, 

G is multiplicity-free ¢ ,  ¢ is commutative, 

G is generously transitive ¢,  ¢ is symmetric. 

Proof 
See [99]. [] 

The first condition is of particular importance: All Cayley graphs have transitive 
groups of automorphisms [100], and thus the corresponding coherent configura- 
tions ~ are homogeneous. The Hamming graphs and the Johnson graphs, for exam- 
ple, are distance transitive, i.e., for any two pairs of vertices (u,v) and (x,y) 
fulfilling d(x, y) = d(u, v) there is an automorphism a such that a(x, y) = (u, v), 
see, e.g., [97]. This implies in particular that Aut[F] is generously transitive, i.e., 
that for any two vertices u,v E V there is an automorphism fulfilling 
a(u, v) = (v, u). 

5.4. EQUITABLE PARTITIONS 

DEFINITION 
Let w be a partition of the vertex set V of 1'. w is called equitable if the number 

of neighbors which a vertex y E Y has in class X is independent of the choice of the 
vertex in Y. In other words, w is equitable if for all X, Y E w holds 

~,xr de__f [O{y} M X[ = ~ Axy for all y E Y. (34) 
xEX 

We call ,~ the collapsed adjacency matrix o f f  with respect to w. If  an equitable par- 
tition w contains a class w0 = {u} consisting of a single vertex u E V we will say 
that it is anchored at (the reference vertex) u. 

With each partition w of V into M +  1 classes there is an associated 
(M + 1) x [ V[ matrix, which we will also denote by w. Its entries are 

def ~ 1 if x E X,  
w x x  = (35)  

t 0 otherwise. 

We remark that this definition is the transpose of the convention in Godsil's book 
[92], while it conforms the notation in Bollob~is' book [101]. Equitable partitions 
have been introduced by Schwenk [102]; more recently they have been used by 
Powers and coworkers under the name colorations, see, e.g., [103,104], see also 
[64,Chap. 4]. The following lemma collects their most useful properties. 
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PROPOSITION 11 

Let w an equitable par t i t ion of  the vertex set V of a graph F. Then the following 
s ta tements  hold. 
(i) wA = . ~ w .  
(ii) I f  ~ is an eigenvector of  A with eigenvalue #, then v = w~o is a right eigenvec- 

tor  of  A with the same eigenvalue # provided v ~ O. For  later reference we 
note  the explicit formula  

v(X) = ~ ~(x) .  (36) 
xEX 

(iii) I f v  is a right eigenvector of .~ ,  then u(X) = (1/IXl)v(X) defines a left eigen- 
vector of  A. 

(iv) I f u  is a left eigenvector of.~,  then uw is an eigenvector of  A which is cons tant  
on all classes o fw .  

(v) IXl[AS]xr = [Y][~"]rxf°ralls. 
(vi) The characteristic polynomial  of  .~ divides the characteristic po lynomia l  of  

A. 
(vii) Ifl-' is connected then A and .~ have the same spectral radius. 
(vi') I f  w is anchored  at some reference vertex x0 E V then A and ,~ have the same 

minimal  polynomial .  
(vii') I f  w is anchored  at some reference vertex x0 c V then # is an eigenvalue o f .~  

if and  only i f#  is an eigenvalue of  A. 
(viii)p(A) ---/3(A) for any polynomialp .  
(ix) I f  w is anchored  at x0 E V then [A']yx0 = [.~S]yxo whenever  y and ) / b e l o n g  to 

the same class o fw .  

Proof 
See [92, chap.5] for the proofs of (i) th rough (vii). Propert ies (vi') and (vii') are 

[101, Them.8.6], (viii) is [105, Lem.1], and (ix) follows f rom (viii) and 
^$ 

[AS]y,0 = [AS]xoy = [A ]x0r for a l ly  E Y which is true because {x0} is a class o f w  on 
its own. 

DEFINITION 

Let 9l be a par t i t ion of  V × V, and let x0 6 V. Then the par t i t ion 9%° of  V 
anchored at (the reference vertex) xo E V has the classes 

Xxo = {x E Vl(x, xo ) C X},  (37) 

where A" c 9~. 

It is trivial to check that  9~xo is in fact a part i t ion of  V. Note  that  A'xo as defined 
above can be empty.  The interest in this construct ions originates f rom the following 
result: 
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LEMMA 10 

Let 91 be a coherent configuration on V and let x0 E V. Then 91x0 is an equitable 
partit ion of  V anchored at the reference vertex x0. The entries of the collapsed adja- 
cency matrix fulfill 

Ax,oYxo = ~ p~,y. (38) 
ZEgt 

ZnA¢O 

By eq. (38) the entries in A do not  depend explicitly on the reference vertex x0. If  
91 is homogeneous,  then none of the classes Xx~ in the "projection" is empty, and 
we can assume that the rows and columns of A are indexed by the classes of the 
coherent configuration 91. 

Note  that the collapsed adjacency matrix ~, obtained from a coherent configura- 
tion 91 as described above is contained in the intersection algebra (~). In fact, a 
basis of (~) is obtained by the same procedure: 

PROPOSITION 12 

Let 9l be a coherent configuration and x0 E V. Then 

P~'y = Yxz  = Z Yxz for any z E Z .  
xEXx o 

(39) 

Proof 
See [89]. [] 

PROPOSITION 13 

Let 9l be a coherent configuration compatible with 17'. Then (91) is commutat ive 
if and only if all eigenvalues of A. are simple. 

Proof 
See [89]. [] 

The following proposition is the main result of [106]. In this paper w has been 
assumed to arise from the orbits of a transitive automorphism group of F. 
However, only the properties of equitable partitions anchored at a reference vertex 
x0 E V are actually used for its proof. 

PROPOSITION 14 

Let I ~ be a D-regular connected graph with adjacency matrix A and let w be an 
equitable partition of V anchored at x0 E V. Let g : w -~ N be a real valued func- 
tion of  the classes o f w  and define g* : N --, N by 

g*(s) d~d T]yxo g(Y). (40) 
Yew \yE Y ) '  
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Then g* is an exponential function if and only if g is a left eigenvector of  the col- 
lapsed adjacency matrix .~ ofF.  In this caseg*(s) = g({x0}) x (#/D) ~. 

Proof  
We sketch only the main ideas of the proof  here. The details can be found in 

[1061. 
(i) The first step is to construct bases of left eigenvectors {ui} and right eigenvec- 

tors {vi} of .~ that fulfill (ui, vj) = ciSij with constant ci > 0. This is possible since 
is diagonalizable. One can show furthermore that one may choose these bases such 
thatu({xo}) = v({xo}) = ~O(Xo) = 1 / [ x ~ .  

(ii) The next step is to express [T']yxo in terms of  the collapsed adjacency matrix. 
One finds explicitly 

E [ T S ] y x ° -  ~ ~ -  cS \ D  J " 
yE Y 

(iii) The final step consists in expanding g w.r.t, the left eigenvectors of  A, 
g(Y)  = ~-]k bkUk(Y). Substituting this into the definition of  g* yields after some cal- 
culation g* (s) = ( 1 / ] X / ~ ) E k b k ( # k / D )  ~" [] 

5.5. R A N D O M  WALKS AND COHERENT CONFIGURATIONS 

In this section we link the simple random walks on F with the properties of coher- 
ent configurations that are compatible with F. Our goal of  course is to eventually 
derive a relation between the " random walk" correlation function r(s) of a land- 
scapes and its autocorrelation function p with respect to a coherent configuration 

on F. The first step is to consider the structure o f T  in some detail. 

LEMMA 11 

Let F be a D-regular (connected) graph with adjacency matrix A, and let 
T = (1/D) A be the transition matrix of  a simple random walk on V. 
(a) If w is an equitable partition of V anchored at x0 ~ V, then we have for each 

class Y E w a n d a l l y  E Y: 

1 E[T ' lyx0.  [T"]yx0 -Irl  
(b) Ifg~ is a homogeneous coherent configuration on V and compatible with F, then 

for each class 32 c 9t and each x0 C V holds 

,x0~)e def o (41) y~yZ[TS]yx° = , ] Y[TS]yx° = ~sy. 

We are now in the position to derive a simple geometric relationship between 



P.F. Stadler / Landscapes and their correlation functions 31 

r(s) and p(2(). The following lemma establishes a generalized version of a well 
known result for the distance classes of a distance transitive graph, see e.g. 
[15,52]. 

LEMMA 12 

Let P be a connected D-graph, let 9l be a homogeneous coherent configuration 
compatible with 1-' and le t f  be a non-constant landscape on I', with "random walk" 
correlation function r(s) and correlation function p with respect to 9~. Then 

r(s) = ~ OsxP(X). (42) 
XE~I 

THEOREM 2 

Let I ~ be a connected D-regular graph with adjacency matrix A and let 9~ be a 
homogeneous coherent configuration on V compatible with I'. Furthermore l e t f  
be a non-flat landscape on P with "random walk" correlation function r(s). Then: 

The autocorrelation function p o f f  with respect to 9l is a left eigenvector of .~  
if and only ifr(s) is an exponential. 

Proof 
Choose an arbitrary x0 E V and consider the equitable partition 9~x0. 

Furthermore define g(2(x0) ~f p(2() for all 2( E ~R. Then, 

g*(s) def ~ ~ [TS]yxog(Yxo) = ~ Osyp(y) = r(s) 
yx o Egtx o yEYx o YEg~ 

is the "random walk" correlation function o f f  as an immediate consequence of 
Lemma 12 above. Proposition 14 guarantees that g* is exponential if and only ifg is 
a left eigenvector of,~. Recalling that we may consider A indexed by the classes of 
9l instead of by the classes ofg~x0 completes the proof. [] 

5.6. ASSOCIATION SCHEMES AND DISTANCE REGULAR GRAPHS 

Suppose that 9~ is a symmetric coherent configuration (i.e., a (symmetric) asso- 
ciation scheme) compatible with the D-regular graph F. Then the algebra (9l) coin- 
cides with the adjacency algebra of 1-', i.e., any X E (9~) is a polynomial in A [89]. 
Thus the ONB {cpi} of the Laplacian simultaneously diagonalizes all the matrices 
associated with the classes of 9l. The corresponding eigenvalues are known as the 
eigenvalues of the association scheme, X~pi = pi(2()qoi for all 2( E 9~, see [92, 
p.225]. 

Now consider the correlation function of a basis vector (/9 i with respect to 9~: 

 i(x) aof I Vl I Vl "x" 
__ i ~_~lpi k ) .  (43) 

IXl ( oi, qoi) 
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As a consequence of Theorems 1 and 2 we know that wi is a left eigenvector of the 
collapsed adjacency matrix, (~3iA=lZia) i. Proposition l l.iii implies that 
vi(X) = [Xlwi(X) is the corresponding right eigenvector. Consequently we find that 
Pi itself is a right eigenvector of A. This is a well known result in the theory of dis- 
tance regular graphs [97, sect. 4.1 .]. 

The functions wi fulfill the orthogonality relation 

IVl 
IXlwi(X)~J(X) - m(Ai) ~ij, (44) 

XE~R 

where m(Ai) is the multiplicity of the i-th eigenvalue of the Laplacian of I', see [97, 
Prop. 2.2.2.]. 

Even more is known if the graph I" is distance regular. An association scheme is 
called P-polynomial if the matrices Da corresponding to the distance classes can be 
written as polynomials of degree d in terms of the adjacency matrix A. An associa- 
tion scheme is P-polynomial if and only if it consists of the distance classes of a dis- 
tance regular graph, see e.g. [92, sect. 12.3]. The Hamming graphs Qn and the 
Johnson graphs J(n, k) are of this type, while the Cayley graphs of the symmetric 
group are not distance regular, see [107] for the adjacency algebra of 1"($4, T). 

Suppose £ is distance transitive; then for any two points (x, y) E V with distance 
d(x, y) -- d there are c(d) neighbors ofy with distance d - 1 from x and b(d) neigh- 
bors ofy  with distance d + 1 from x. The functions wi(d) def Wi(79d ) fulfill the fol- 
lowing recursion: 

c (d )  - c (d )  
wi(d+ l ) =  1+ --~(~)Aiwi(d)- d )Wi (d -1 ) ,  wi(O)= 1, (45) 

for l<~d<~d*. In this expressions /~i is as usual the eigenvalue of the graph 
Laplacian corresponding to wi. Furthermore it can be shown that the wi form a sys- 
tem of orthogonal polynomials [108]. We present here the explicit expressions for 
the Hamming and Johnson graphs, see also Table 2. 

Hamming graphs lead to Krawtchouk polynomials: 

1 1 
wl(d) j (7 ) (a_  1)l K,,,a (d) ___ ( j ) ( a -  1)l j=~0 (_ l ) j (a  - 1)l_j ( j ) ( / ~ d ) .  

(46) 

Krawtchouk polynomials play an important role in coding theory [109,110]. The 
Hahn polynomials are the terminating hypergeometric series of type 

3F2(al, a2, a3; bit b2; Z) def 
(al )j(a2)j(a3)j zJ 

j=l (bl)j(b2)j j ! '  

where Pochhammer's symbol (a)j is defined by (a)j = a(a + 1). . .  (a + j  - 1) and 
(a)0 = 1. The polynomials associated with the Johnson graphs are 
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Table 2 
Parameters for Hamming and Johnson graphs. 
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4.,k) 

Order IV I a" 
Degree D ( a -  1)n 
Diameter d* n 

Eigenvalue 
Multiplicity 

Polynomial 

k ( n - k )  
min[k,n-~ 

Aj ja  j(n - l+ j )  
m(Aj) ( a -  1)'@) n+l-O 

wj Krawtchouk, eq. (46) Hahn, eq. (47) 
b(d) ( a - 1 ) ( n - d )  ( k - d ) ( n - k - d )  
c(d) d d: 

c@k(d) = 3 F 2 ( - d , - l , - n  + (l - 1 ) ; - (n  - k ) , - k ;  1) 

= ~ - ~ ( - l ) j ( - n + ( l -  1))j 

j:o (-a); .  
(47) 

6. S u m m a r y  

A mathematical framework for the analysis of (fitness) landscapes on regular 
graphs has been developed. By a landscape we mean a given funct ionf  defined on 
finite set V of configurations together with a neighborhood relation between con- 
figurations that allows us to consider the "configuration space" as an undirected 
graph. The basic ingredient of this theory presented here is the "Fourier series" 
implied by the geometry of the graph that underlies the landscape. More precisely, 
we use an expansion of the landscape in terms of an orthonormal base of eigenfunc- 
tions of the Laplacian operator of the configuration space upon which the land- 
scapef  is built, see section 3. 

We call a landscape elementary if it consists of an eigenfunction of the graph 
Laplacian plus an arbitrary constant function. The landscapes of a large number of 
important examples from spin glass physics to combinatorial optimization are of 
this type, among them the Sherrington-Kirkpatrick spin glass and the travelling 
salesman problem, see section 4. 

Two types of correlation functions are commonly used for characterizing and 
comparing landscapes: "Time-series" sampled along random walks give rise to the 
" random walk" correlation function r(s) of a landscape, see section 2. Partitioning 
the set of all pairs of configurations into suitable classes, such as the classes induced 
by the natural distance measure between configurations. The autocorrelation func- 
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tion p(X)  of a given landscape with respect to a given partition of the configuration 
space can be defined in a canonical way. It has interesting properties provided the 
partition is consistent with symmetry properties of the configuration space. For 
example, the distance partition turns out to be the natural choice on sequence 
spaces. In more technical terms, the partition must form a coherent configuration 
compatible with the graph-structure of the configuration space, see section 5. 

This contribution has been concerned with elucidating the relationships between 
the Fourier-expansion of a given landscapes and its two correlation measures r(s) 
and p(X) .  The  main result of this paper characterizes elementary landscapes in 
terms of their autocorrelation functions. Summarizing Theorems 1 and 2 we have: 

MAIN RESULT 

Let I" be connected D-regular graph, and let 9l be a homogeneous coherent con- 
figuration which is compatible with I'. Furthermore l e t f  be a non-fiat landscape on 
I" with "random walk" autocorrelation function r and autocorrelation function p 
with respect to 91. Then the following statements are equivalent: 
(i) f is elementary. 
(ii) f -3~1 is an eigenvector the Laplacian - A  of P with a positive eigenvalue. 
(iii) r is of the form r(s) = a -s (with - 1 ~< a < 1). 
(iv) p is a left eigenvector of the collapsed adjacency matrix .A of P (with an eigen- 

value smaller than D). 

Since any landscape on P is necessarily a superposition of elementary landscapes, 
so are their correlation functions. Thus supposef  = ~ j  aj~j, where --Aqok = Ak~Ok. 
Let Ap, p = 0 , . . . ,  M designate only the distinct eigenvalues, and let Ip be an index 
set such that Ak = Ap if and only if k E Ip. As usual we use A0 = 0 for the smallest 
eigenvalue of - A .  Define 

~kEIp lak[ 2 Bp de---=f ~--~ A, -- 
keZ, 2k#0 [ak] 2 

for allp ¢ 0. Then we have 

r(s) = ~ Sp(1 - Ap/O) s . (48) 
p¢:O 

If furthermore all eigenvalues of the collapsed adjacency matrix .~, for which there 
are non-zero coefficients in the Fourier expansion o f f  are simple then we have 

u.(X) 
p(X)  = ~_, Bp up(Z) ' (49) 

p#O 

where Up is a left eigenvector of.~ belonging to the eigenvalue Ap. This is true in par- 
ticular for all landscapes on Hamming graphs and Johnson graphs. 
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7. Discussion 

Many important examples of landscapes are elementary, i.e., (up to an additive 
constant) they fulfill a discrete analogue of the Helmholtz equation Af  + Af = 0. 
Among them are Derrida's p-spin models, and the landscapes of the best known 
combinatorial optimization problems. Elementary landscapes exhibit a character- 
istic distribution of local optima on the configuration space which depends cru- 
cially on the corresponding eigenvalue A of the Laplacian. In particular, the 
"location" of A in the spectrum of the Laplace operator determines the maximum 
number of nodal domains, that is the maximum number of disconnected islands of 
values o f f  that are above average. The analogy with the properties of the eigen- 
functions of the Laplacian on a Riemannian manifolds strongly suggests the con- 
jecture that a landscape has to be more rugged if it corresponds to a higher "excited 
state" in the spectrum of the Laplacian. In fact, the nearest neighbor correlation on 
the landscape is directly linked to the eigenvalue A. More precisely, the set of all 
autocorrelation functions forms a simplex spanned by suitably normalized left 
eigenvectors of the collapsed adjacency matrix of the configuration space. The cor- 
responding eigenvalues determine the decay of the correlation function along a sim- 
ple random walk on the landscape. 

The relation between the Fourier expansion of a landscape and the computa- 
tional complexity of the optimization problem on the landscape is of great impor- 
tance for devising practical optimization heuristics. Disappointingly, there seems 
to be no simple relation. Most of the elementary landscapes discussed in this paper, 
such as the TSP, are A/P-complete, but have only a fairly small number of nonzero 
Fourier coefficients, namely those corresponding to a single eigenvalue of the con- 
figuration space. 

The formalism derived in this contribution suggests to approximate a given land- 
scape by a superposition of elementary landscapes, in particular if we do not have a 
closed form but only a computationally costly algorithm for evaluating it at parti- 
cular configurations such as, for example, in the case of RNA secondary structure 
models. The elementary landscapes depend only on the configuration space and 
can be obtained explicitly in many cases, in particular for all sequence spaces with 
constant chain length (i.e., Hamming graphs). In practice it is even easier to directly 
compute the correlation functions of elementary landscapes. By the Main Theorem 
one needs only the collapsed adjacency matrix of the configuration space, which is 
small enough in many cases that numerical solutions can be obtained even if an ana- 
lytical expression is unknown, as in the case ofTSPs. A comparison of the autocor- 
relation functions obtained from computational studies of the landscape of interest 
with the correlation functions of elementary landscapes on the same configuration 
space allows to estimate the amplitudes Bi, that is the coefficients of the decomposi- 
tion of the "experimental" correlation function into the elementary ones. These 
amplitudes can be used as an easy means of describing the landscape. On a Boolean 
hypercube, for instance, the amplitudes Bp have a very intuitive interpretation: they 
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measure the relative importance ofp-ary (spin) interactions. As an example we have 
seen in section 4.2. that the landscape of the "low autocorrelated binary string 
problem" consists of two "modes": An asymptotically vanishing contribution of a 
2-spin model and a dominating mode corresponding to a 4-spin model. 
Asymmetric TSPs, as another example, consists of two modes, corresponding to 
the symmetric and the anti-symmetric part of the cost matrix. A study of the 
decomposition of RNA landscapes into "modes" corresponding to elementary 
landscapes is reported elsewhere [111]. Of course, even a complete understanding 
of elementary landscapes is only the first chapter in the story of landscapes: What 
can be said about the superposition of elementary landscapes, even if the structure 
of the elementary parts is known in detail? 

Many open questions remain. Are there better bounds than Courant's theorem 
on the number of nodal domain of an elementary landscape? What is the precise 
relation between the eigenvalue and the number of local optima in an elementary 
landscape? How much of the theory outlined in this contribution carries over to 
configuration space with less symmetry, such as spaces of finite trees? Is an analo- 
gous formalism meaningful for potential energy hypersurfaces on continuous 
spaces, in particular for the energy surfaces of biological macromolecules? Can we 
devise a comparable formalism for the combinatory maps of sequence-structure 
relations [22], where the image of a configuration is not a real-valued fitness but an 
element of an abstract metric space? 
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Appendix:  Proofs 

Proof  o f  Lemma 1 
Let 6x0 (x) = 6x,xo. Then the probability that xt = z is given by the z-coordinate 

of [TS6xo]. Thus 

7" 1 
(F(xt))xo,t = lim 1 ~ ] - - ~ Z  Z F(z)[Tt6x°]z 

T--.oo T + 1 t=O ' ' x o E V  ZEV 

= lim 1 t_~o 1 [ ( x o ~ V ) ]  7"--,o~ T +-----1 - ~ 1 Z  F ( z ) T t ¢o 
-- z E V  z 
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1 
lim - -  T-.,oo T-t- 1 Tt~=O [-~vF(Z)[Tt lL"  

Since F is regular we have T1 -- 1, and therefore 

• 1 r 1 1 T 

(F(x,))xo,t= h rnoo~+- -~Z~-V-~ .F (z )  = lim y ~ P .  r--.oo T + 1 t=0 
/ = 0  ~ ~ Z E  V 

Since _F is constant  in " t ime" we have ( F ( x t ) ) x o , t  = ~'. []  

Proof of Lemma 2 
As in the p r o o f o f L e m m a  1 we start with 

1 .-K.r 1 .---.. 
lim - -  - -  (F(xt+,,xt))xo,t = r ~  T + 1 t~=o lVl xo~eV Z F(z"z)[T'6zle[TtSxolz 

z,za E V 

IT(; )] = l i r a  1 T +  1 E I E F(z', z)[TStSz]e t ~i~o 
t=0 , V, ~,e~v z 

1 . & l  . - .  
- l i m -  - -  T--+oo T + 1 ~ IVlz,~,ev F(zl'z)[TS~z]e " 1 

1 
= IV I Z F(z~'z)[T'Sz]z" 

z,z'G V 

By definition we have [T~]~  = [TS]z,e; this completes the proof• []  

Proof of Corollary 1 
Use Lemma 1 with F = f  and F = f 2 ,  respectively, and Lemma 2 with 

F(x, y) = f(x)f(y) .  Substitution into the definition ofr(s) completes the proof. []  

Proof of Lemma 3 
A1 = 0 implies that j2 = f - f * l  is an eigenvector of - A  with eigenvalue A. 

Thus j  2 either constant  and A = 0, or A > 0 and 0 ?, 1) = 0. In the first c a s e f  itself is a 
flat landscape wi th f (x )  = f*  =)? for all x E V. In the second case we have 

I V [ f =  E f ( x )  = (f, 1) + f * ( 1 ,  1) = 0 + f * l V l .  
xE V 

Consequently,  i f f  is elementary, then the constant f*  coincides with the mean  value 
9~ of  the landscape f .  Connectedness of I" implies that  0 is a single eigenvalue and 
thus j  ~ must  be an eigenvector belonging to an eigenvalue A > 0. The converse is tri- 
vial: a landscape of  the form (6) is always elementary. []  
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Proof of Lemma 4 
The Laplacian - A  of  Kn has only two distinct eigenvalues, A0 --- 0 with multipli- 

city 1 and eigenvector 1, and the n - 1-fold degenerate eigenvalue A1 = n [64]. Thus 
any n o n - c o n s t a n t f  is of  the form cl  + ~o with some constant  c E II~ and (% 1) = 0, 
i.e., ~o is an eigenvector belonging to A1. []  

Proof of Lemma 5 
It is convenient to allow arbitrary indices, setting Crq = 0 for all q < 1 or q > n. 

With this convention we have 

n- 1 n-k n-k 
f (o ' )  = ~ ~ ~ (T,ffi+kffjO'j+ k 

k=l /=1 j = l  

n L ] = Z Z Z O'i(Yi+kffjO'j+k "~- ffi-k40"i+k "j- 4 4 + k  "~ O'i4+kCri+ 2k 
k=l  i=1 ¢i-k,i,i+k 

n ( n -  1) n-1 n-k  n-1 n-k 

?2 
k=l i=1 k=l i=1 jT~iik,i,i+k 

Using the definition of  e . . .  (or) and eliminating all terms containing a O-q with 
q < 1 or q > n completes the proof. []  

Proof of Corollary 2 
The functions ei,,i~,...,~,, where all indices ik are different, are eigenfunctions of  

the Laplacian - A  of  the Boolean hypercube belonging to the eigenvalues Ap. Eq. (9) 
in the proof  of  Theorem 1 implies that 

a b 
r(s) - a+b-- (1 - 4/n) s + a---~ (1 - 8/n) s 

where a and b are the sums of  the squares of  the coefficients of  e2 and e4, respec- 
tively. Since all coefficients are 0 or 1 we simply need to count all non-zero terms in 
Lemma 5. We find that a = O(nZ) andb = O(n3), and the corollary follows. []  

Proof of Lemma 6 
Without  loosing generality we can consider the neighborhood of  the identity per- 

muta t ion  ~, since the numbering of the cities is arbitrary. 
(i) In the case of  transpositions we start with Grover 's  [58] formula 

f((i , j))  - f ( c )  =Wj, i -1  + Wi+ld + Wij-1 + Wj+l,i 

-- Wi,i_ 1 -- Wi+l, i -- Wjj_ 1 -- 14~+1, ] 

"4- (~j,i+l "4- ~j,i-1) ( Wij "+- Wfi ) . 

Summing over all i 7 ~ j yields 2Af( t )  = 4X - 4nf(L) + 2f(L) + 2f* (t) and analo- 
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gously we obtain 2A f*  (b) = 4X - 4n f *  (L) ÷ 2f* (5) ÷ 2f(L), where X is the sum over 
all non-diagonal  entries of W. The proposition follows immediately. 

(ii) In case of  inversions we find 

l - I  

f ( [ k ,  I] - f (L)  = Wl,k-I + Wl+l,k -- Wk,k-1 -- Wl+l,l ÷ ~ - - ~ ( W j j + l  - -  W j + I j )  . 
j=k 

Summing over all k ¢ / yields 

2Af(L) = 2X - 2nf(L) + n(n - 1) [f* (~) - f ( t , ) ]  . 

A completely analogous result is obtained for A f*  (L), and a short calculation then 
completes the proof. []  

P r o o f  o f  L e m m a  7 
Without  loosing generality we may evaluate the cost function of  the identity per- 

muta t ion  c since the labeling of the vertices is arbitrary. Using the labels k of the 
matched pairs as indices we have to following five types of neighbors, and the corre- 
sponding changes of the cost function for each of them 

[111] [W2j-l ,2i  q- W2i-I,2j] - [W2i-I,2i ÷ W2j-I,2j] , 

[12'] [W2j,2i + W2j-l,2i-,] - [W2i-1,2i + W=j-1,2j] , 

[21'1 [W2i-l ,2j-1 ÷ W2i ,2 j ] -  [W2i-l ,2i ÷ W2j-I,2j],  

[22'] [W2i-l,2j ÷ W2j-l,2i] - [W2i-l,2i-.Jr- W2j_I,2j] , and 

[11] W2i,2i-1 - W2i-l ,2i . 

Summing the first four terms over all i ¢ j  (i.e., counting each neighbor twice) 
yields 

[oe] + [oe] - 2 f ( c ) -  2(n/2 - 1)f(L) + [ee] + [ o o ] - d -  2(n/2 - 1)f(c) 

+ [oo] + [ee I - d -  2(n/2 - 1)f(c) + [oe] + Joe]-  2f(~) - 2 ( n / 2 -  1)f(L), 

where [oe], etc., denotes the sum over all W O. with odd i and even j ,  and d is the 
sum over all diagonal entries Wkk. Using that W is symmetric, i.e., [oe] = [eo], this 
sum may  be written as 2Af( t )  = 2 Y~i#j W~ - 4(n - 1 )f(L), since the transposition 
(2i - 1,2i) gives a contribution of 0. Thus we have Af(L) = 2(n -- 1)[f --f(L)], i.e., 
A = 2(n - 1 ), a n d f  is elementary on the Cayley graphs P(Sn, T ) .  [] 

P r o o f  o f  L e m m a  8 
From the definition ofp  we find 
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y ~  p(X). [X[-  (f,f~ f ,  X f - (f,f---~ (f ,  J f ) ,  
XE~R 

where J is the matrix with all entries 1. It is straightforward to check J f  = [ V f l ,  
and thus (f ,  J f )  = [V[2j ~2 = 0. [ ]  

Proof of Lernma 9 
This statement is equivalent to claiming that A" N Da # !3 implies R' c_ Da if and 

only ifg~ is compatible with F. The "only if" part  is trivial. 
Assume thus that ~l is compatible with F. We proceed by induction in d. The 

claim is true for d = 0 since 9~ is pre- coherent, and for d = 1 by compatibili ty with 
F. Suppose now, that the claim is true for all distances up to d and consider a pair of  
vertices (x, y) with distance d(x, y) = d + 1. Let Z be the class of  9~ to which (x, y) 
belongs. The triangle inequality implies that there is z E V such that  d(x, z) = d 
andd(z,y) = 1 and let (x, z) E X a n d  (z,y) E Y c ..4. Thereforep~cy > 0. N o w c o n -  
sider an arbitrary pair (x',y') E Z. Since p;~y > 0 there is at least one z' c V which 
fulfills d(x', z') = d and d ( t , / )  = 1. The triangle inequality implies 
d(x', y') ~ d + 1. I fd(x ' ,  y') < d + 1 we have Z VI Dh # ~ for some h ~< d and thus, by 
the induction hypothesis, Z C_ Dh. This contradicts d(x, y) = d + 1. We conclude 
d(x',y') = d + 1 and therefore Z c_ Dd+I. [] 

Pro of of Lemma 10 
Consider three classes R', y ,  Z C ~R and an arbitrary vertex xo E V. We have 

p ~ y = I { z E  V I(x,z) C X and (z, y C Y}[ V(x, xo) E Z  

= I{z c Yxo I (x, z) e x } l  Vx e Zx . 

On the other hand we obtain 

AXxoY~o = [{z E Yxo [ (x,z) ~ A}[ = ~ [{z E Y~o [ (x,z) C X}[ 
XC_A 

for all x E Zxo. Comparing this with the above representation of the intersection 
numbers yields 

Axxoyxo = ~ P~y,  
ZE~ 
znA#O 

which is independent of the representatives of the classes by definition. Thus ~Rxo 
is equitable. It remains to show that ~Rxo is in fact anchored in x0. R" _C 2" implies that 
A'xo is either empty or A'xo = {x0}. By definition there is some A' c_ 2" that contains 
(xo, xo), and thus  {xo} E ~Rxo. [] 
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Proof of Lemma 11 
(a) By propos i t ion  11 .ix we know that  [AS]yxo = [AS]yxo whenever  y and y'  are in 

the same class of~v, and thus the same holds true for the powers o fT .  Thus  we have 
for all y E Y 

E[TS]yxo = l Yl[Tqyxo. 
yEY 

(b) Since 9~ is a coherent  conf igurat ion and compat ible  with 1-' we may  write 
AS = ~xe9~ bxX, and thus A s is cons tant  on the classes ofg~. Fur the rmore ,  we have 
shown in L e m m a  10 that  the project ion Y~0 is an equitable par t i t ion anchored  at x0. 

h s Thus  we ave ~-~'~ySyxo[T ]yxo = [Yl[TS]yx0 , where the second factor  on the r.h.s. 
depends  only on the class 3; to which the pair  (y, x0) belongs. The first factor is 

lY~ol = {y E z l (y, x0) e Y} 

= {y E V l(y, xo) ~ Y and (xo,y) E 3 +} =p~+y, 

where A" is the class of  9~ to which (x0, x0) belongs. Since 9~ is homogeneous  by 
assumpt ion  we have X = Z, and  thus [Yxo [ = t~y+y for all )co E V. Consequent ly  we 
have [y[ = [ V[ - lye0 [ and the first factor is independent  of  x0 as well. We have 

E I 'l,xo = E Z c 'Jexo 
O',xo) ~Y  xo ~ V y~yx  o 

and par t  (b) of  the l emma follows immediately.  [ ]  

Proof of Lemma 12 
We begin with the definit ion of  r(s). Withou t  loosing generali ty we assume 

f = 0 and o}f = 1. Thus  

1 s 1 

r(s) = ~, , xosV E [T ]yxf (y)f (x°) = ~[  xo~V rxoEe~ :Y~oE [TS]yxf (y)f (x°) " 

As a consequence of  L e m m a  11 .a we have 

___ TS 1 
r(s) ~ Y zeYxo IJ xo, :Yxo 

and  using L e m m a  11 .b we may  rearrange this as 

1 

r(s) =-~[xo~eVY~o~ tgsy" l '[yxo[ :Y.o E f(Y)f(x°) 

.--,~ 1 . - - - ,  1 
= L >. E scv:(xo)- E s(x)SCv). 

Y ~  ) ~ xo~ V ) o ) yEyxo y~'.,'t (x ,y)~y 

Subst i tut ing the defini t ion o f p ( y )  completes  the proof.  [ ]  
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